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The Doors of Perception: Theory and Evidence of   
 Frame-Dependent Rationalizability†

By Gary Charness and Alessandro Sontuoso*

We investigate how strategic behavior is affected by the set of notions 
(frames) used when thinking about the game. In our games the action 
set consists of visual objects: each player must privately choose one, 
trying to match the counterpart’s choice. We propose a model where 
different  player-types are aware of different attributes of the action 
set (hence, different frames). One of the novelties is an epistemic 
structure that allows players to think about new frames, after initial 
unawareness of some attributes. To test the model, our experimental 
design brings about multiple frames by varying subjects’ awareness 
of several attributes. (JEL C72, C78, C91, D83)

Cognitive scientists define a “frame” as a bundle of information about the 
 typical characteristics of a situation or problem. Frames are stored in individ-

uals’ minds and provide default information with which to interpret and respond to 
events (Schank and Abelson 1977). Similarly,  artificial intelligence pioneer Marvin 
Minsky (1975) codified frames so as to represent knowledge structures in the con-
text of  visual-reasoning and  communication-processing problems: for instance, the 
correct interpretation of (and response to) a hand gesture depends on the agents’ 
understanding of the situation in which the gesture occurs. Indeed, in many every-
day interactions individuals face an implicit coordination puzzle, the solution to 
which depends on the set of notions (i.e., the frames) they take into account when 
considering it. Many such problems might seem trivial since we often interact with 
people with whom we share a similar frame, to the point that one does not even 
notice that there was a coordination puzzle in the first place. However, miscoordi-
nation may become evident when one interacts with people who see the problem 
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through a different lens (think of the awkward confusion about greeting styles we 
sometimes experience in social settings).1

The cognitive processes underlying everyday coordination problems might be 
thought of in this way: first, one “mentally frames” (i.e., describes) the problem 
on the basis of its perceived characteristics, then one follows the solution that is 
naturally associated (i.e., comes to mind easily) with the relevant frame. A key 
determinant of an individual’s behavior is therefore her perception of the problem’s 
characteristics. Accordingly, in this paper we shall investigate—theoretically and 
experimentally—how choice behavior in abstract coordination games is affected by 
the individual’s perception and beliefs about others’ perception.

In formal accounts of coordination problems (i.e., symmetric,  simultaneous-move 
games with multiple  pure-strategy Nash equilibria),2 the issue of singling out 
an optimal course of action has been a  long-standing consideration due to the 
 nonuniqueness of possible solutions. Relatedly, Thomas Schelling (1960) noted that 
the use of “situational cues” (i.e., characteristics or attributes of the problem) could 
help individuals converge on one solution; in fact,  mutually recognizable attributes 
often induce a frame in such a way to make a specific course of action come to mind 
readily. Here, we contribute to the analysis of frames by formalizing assumptions 
about attribute awareness, rationality, and beliefs and then by studying their behav-
ioral implications in coordination problems. Below is an example.

Consider a “matching game” where two players are presented with a set of options, 
from which each player must privately choose one with the goal of matching the 
counterpart’s choice. In this case a frame may be viewed as a player’s description 
of the options, based on the attributes she perceives and thinks about.3 For a sche-
matic illustration, let’s suppose that player  i ’s action set in a matching game consists 
of three visual objects denoted   { a 1  ,  a 2  ,  a 3  }  , with options 1, 2, and 3 respectively 
representing a cyan triangle, a cyan diamond, and a lavender triangle. Note that the 
conventional way of defining a game does not permit a qualitative characterization 
of the options to enter the formal description of the game. Still, as was first sug-
gested by philosopher David Gauthier (1975), accounting for the characteristics of 
the options implies “restructuring” the action set (e.g., someone who thinks about 
the objects’ colors would distinguish actions according to their colors).

1 In the economics literature the theory of the firm views coordination problems as one of two key organiza-
tion hurdles (the other being the much more studied “agency problem”) (Milgrom and Roberts 1992). It has been 
suggested that the coordination problem of organizations is inherently due to people’s cognitive limitations, in that 
individuals often lack a common understanding of the tasks they must integrate and coordinate upon (e.g., Heath 
and Staudenmayer 2000). This line of research implies that individuals come to develop a different understanding of 
their tasks as a result of a different focus or background; different viewpoints may in turn entail different solutions 
to an identical or similar task (Arrow 1974; Kreps 1990; Okhuysen and Bechky 2009; Kets and Sandroni 2021).

2 The class of coordination problems contains any situation in which there exist multiple ways players may 
“match” their behavior for mutual benefit. This class contains a broad and diverse array of interactions, including 
games with slightly conflicting interests and games with or without Pareto-rankable equilibria. In this paper we 
consider “pure” coordination games (i.e., if players choose the same action, they each receive an identical positive 
payoff; otherwise, they each receive nothing), with such games featuring non-Pareto-rankable equilibria.

3 For a real-world example, suppose that you are attending a conference out of town and had previously agreed 
to meet a friend for a drink at the hotel’s bar at 9 pm. Once in the lobby, you realize that the hotel actually has three 
bars and your phone is out of battery. Under the assumption that each of you is indifferent about the meeting place 
and prefers having a drink together (rather than a drink alone), then you have a coordination problem where your 
choice behavior may ultimately depend on your perception of the bars’ salient characteristics.
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Formally, the act of distinguishing between colored objects may be represented 
as the case where player  i  partitions the action set so that each of the cells corre-
sponds to an instance of the color attribute, that is,   { { a 1  ,  a 2  } ,  { a 3  } }  . By contrast, a 
player who thinks about the different shapes would partition the action set so that 
each cell corresponds to an instance of the shape attribute, i.e.,   { { a 1  ,  a 3  } ,  { a 2  } }  .  
Generalizing—for any attribute  k —we say that  k  induces a frame for player  i , if  i  
partitions the action set so that each cell corresponds to an instance of attribute  k : 
when that occurs, we say that  i  perceives and thinks about (“is aware of  ”) attribute  
k . (For example, the partition   { { a 2  ,  a 3  } ,  { a 1  } }   indicates that player  i  pays attention 
to some attribute with respect to which option 1 happens to be distinct.) Intuitively, 
players whose frames comprise several attributes will be aware of multiple ways to 
partition the action set.

Below, we propose and test a model articulating what it entails for players to be 
aware of alternative frames. We shall see that the introduction of  frame-dependent 
“awareness types” restricts players’ beliefs in a natural way, allowing us to ratio-
nalize why differences in players’ frames may lead to differences in game play. 
Specifically, our belief restrictions imply that cells that contain fewer elements stand 
out and thus are more attractive. So in the example above a player who thinks solely 
about attribute  k  (or else believes others do so) will end up choosing the option that 
is unique with respect to attribute  k  (i.e., the  k  “oddity”).

As will be clear, our model integrates streams of research such as the analysis of 
“labelings” (e.g., Bacharach 1993; Janssen 2001) and the study of “unawareness,” 
that is, the case where one does not know something and does not know that one does 
not know it (Dekel, Lipman, and Rustichini 1998a; Heifetz, Meier, and Schipper 
2006).4 Bacharach’s work was the first to explicitly define  attribute-dependent 
labels so as to represent players’ frames (see also Sugden 1995; a related approach 
for the case of repeated games was pioneered by Crawford and Haller 1990, where 
previous play would implicitly label actions in such a way as to generate a distinct 
option, e.g., “do what you did last time” versus “do something else”). In particular, 
Bacharach’s work was seminal in introducing a  nonstandard information structure, 
whereby player  i  does not know the list of all possible opponent types; rather,  i  only 
considers (and  best-responds to) those types who think about attribute combinations  
i  herself thinks about.5

4 For a Level- k  version of Bacharach’s theory, see Bacharach and Stahl (2000). For early work on unawareness, 
see Fagin and Halpern (1987) and Modica and Rustichini (1994, 1999). In this connection it is useful to see how 
unawareness differs from uncertainty: under uncertainty one conceives of the space of all relevant contingencies 
(say,  ω′ ,  ω′′ ,  ω′′′  ) but does not know which has occurred and thus holds a probabilistic belief about each of them; 
under unawareness, instead, one does not think of all relevant contingencies (e.g., if one is unaware of the possibil-
ity that  ω′′′  may occur, one will not hold any belief at all about  ω′′′  ). Dekel, Lipman, and Rustichini (1998a) showed 
that unawareness cannot be accounted for under the assumptions underlying standard models of knowledge (in 
particular, “negative introspection” implies that at any state where an agent does not know some event, she knows 
that she does not know it, which rules out unawareness; see also Chen, Ely, and Luo 2012 and for a survey Schipper 
2014). To circumvent the Dekel, Lipman, and Rustichini (1998a) impossibility result, Heifetz, Meier, and Schipper 
(2006) utilize a system of multiple state spaces, where different player types are aware of different spaces.

5 For example, suppose that the action set consists of marbles that vary in size, brilliance, and material: in 
Bacharach’s (1993) model if a player ignores any such attributes, say, the marbles’ size, then she will not hold any 
belief about the eventuality of facing a size-perceiving opponent. So  i  will not best-respond to types who think 
about attributes  i  herself does not think about. Notably, Bacharach posited that  i ’s beliefs about the distribution of 
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While greatly innovative, the predictive scope of the labeling literature is some-
what limited by its solution concepts’ reliance on strong assumptions (e.g., players’ 
beliefs about the assignment of labels are consistent with an exogenous probability 
distribution, players use a set of principles for selecting among equilibria, etc.); thus, 
this literature is not well suited as a predictive tool in games where one has no expe-
rience about the others’ perceptual limitations or in cases where perception might 
change. To sidestep these drawbacks, we propose a new solution concept. In doing 
so, we build on Heifetz, Meier, and Schipper’s (2006, 2013a) account of unaware-
ness and explicitly incorporate an epistemic structure into the study of frames (i.e., 
unlike the Bacharach model and related work, we formally define a system of multi-
ple state spaces to represent what individuals consider in regard to alternative frames 
and, hence, in regard to opponent types). Moreover, unlike the Heifetz, Meier, and 
Schipper (2006, 2013a) approach, we define a pair of  frame-dependent restrictions 
on beliefs so as to characterize how each type may behave in a game. This leads to a 
novel solution concept (“ frame-dependent rationalizability”), which we use to derive 
experimental predictions and provide a test of competing explanations for the role 
of frames in coordination games.6

To that end, we present an experiment involving ten ( one-shot) matching games, 
played by pairs of subjects without feedback. Our  between-subjects design brings 
about multiple frames by varying subjects’ awareness of several attributes. In exam-
ining the impact of attribute awareness on choice, we contrast our model’s predic-
tions against a set of null hypotheses based on the “standard”  single-state-space 
Bayesian paradigm (i.e.,  incomplete-information games with no unawareness).

In the Baseline treatment each participant is shown six unlabeled objects (i.e., 
colored geometric shapes) on her screen. At the beginning of each game, the com-
puter program selects three of those objects (the same three for each member of 
a pair, while the rest of the objects disappear from the screen). Participants are 
eventually prompted to choose one of the three available objects, with the goal of 
matching the counterpart’s choice; this entire  setup is common information. Each 
of the ten games presents a different  three-object selection and thus differs from the 
other games in the characteristics of the available action set.

The  All-Aware treatment is the same as the Baseline, except that we hint at sev-
eral attributes at once, in such a way that subjects are privately made aware of mul-
tiple attributes. To do so, we ask them how likely they think it would be for Baseline 
participants to notice each of the three attributes of the objects (i.e., color, shape, 
and order of display).7 These questions may be viewed as tautologies, as in “ E  is the 

opponent types are consistent with the true exogenous distribution of types, or else consistent with a truncated and 
rescaled distribution if  i  ignores an attribute.

6 Our solution concept is defined by an iterative deletion procedure, whereby each player  i  best-responds to her 
(subjective) beliefs about surviving type-action pairs of the opponents of which  i  is aware (beliefs about opponent 
types of which  i  is unaware remain undefined). If a player becomes aware of any additional frames, her optimization 
problem is updated so as to account for the eventuality of facing additional opponent types.

7 Specifically, we asked the following questions (in random order across games): “How likely do you think it is 
that the other participants have noticed the different colors of the objects? … the different shapes? … the order in 
which the objects have been drawn by the computer program?” To prevent these questions from generating common 
awareness of the frames, All-Aware participants are informed that the subjects with whom they are paired (i.e., 
Baseline participants) would not be asked such questions but they would otherwise play the same game.
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case or  ¬E  is the case,” where  E  and  ¬E  respectively represent the event such that 
others have and have not noticed an attribute. Note that a question involving a tauto-
logical clause conveys no information about whether  E  or  ¬E  is true. Further, if one 
had been aware of  E  and  ¬E  in the first place (i.e., if one had already paid attention 
to that attribute and thus considered the possibility that others might do so too), then 
any such question would not alter one’s view of the game. By contrast, if one had 
not been aware of  E  and  ¬E  in the first place, then the question itself would auto-
matically generate awareness of those events. Indeed, a key goal of the  All-Aware 
treatment is to ensure that its participants think about all the objects’ attributes.

The  individual-level data from the  All-Aware treatment allow us to test if subjects 
optimize a  frame-dependent expected utility (per our proposed notion of rational-
izability). That is, we predict that each  All-Aware participant chooses the oddity 
associated with the frame that, according to her own beliefs, is  most likely consid-
ered by her (Baseline) counterpart. Relatedly, we stress that the  All-Aware treatment 
manipulation hints at several attributes at once, without directing subjects’ attention 
to any one frame in particular, thereby minimizing any implicit demand effects. The 
data support our predictions, indicating that one’s behavior depends on one’s beliefs 
as to whether the counterpart has noticed (i.e., is aware of) an attribute or not. We 
will see that such intuitive results cannot be captured by “standard” Bayesian mod-
els (i.e.,  incomplete-information games with a single state space), which rule out 
the possibility that players may be unaware of anything relevant. Also, we will see 
that the data from the  All-Aware treatment reveal substantial diversity in individu-
als’ beliefs about others’ awareness of the attributes (contradicting an implication 
of early models with  nonstandard information structures, such as Bacharach 1993).

Next, the Baseline versus  All-Aware treatment comparison permits us to test for 
heterogeneity in individuals’ awareness of the attributes (as opposed to heteroge-
neity in individuals’ beliefs about others’ awareness of the attributes, which we 
discussed above). As a benchmark, we note that the assumptions underlying stan-
dard games with incomplete information (i.e., no unawareness) here imply no sig-
nificant differences across treatments. In fact, if it were true that subjects knew all 
the possible frames/types in the first place (as is implied by the standard Bayesian 
paradigm), then participants would learn nothing from the  All-Aware questions 
above (see footnote 7); also, since those questions in no way make an attribute more 
salient than another, they should not significantly change the  All-Aware participants’ 
choices. Yet, contrary to what is implied by previous models, our data reveal that 
the  All-Aware manipulation does affect average game play. By comparing choice 
distributions across treatments, we conclude that the  All-Aware manipulation makes 
some participants think about attributes to which they would otherwise not have 
paid attention (namely, order frames and, to a lesser extent, shape frames). The data 
further indicate that the  All-Aware manipulation leads to a decrease in coordination 
rates, as is predicted by our model: remarkably, this means that an increase in attri-
bute awareness can hurt successful coordination, ceteris paribus.

To put the results in context, a few comments are in order. First, we stress 
that consistent with the epistemic literature, here being aware of an event (e.g., a 
frame) means that the event is being “taken into account” when one makes a choice 
(Modica and Rustichini 1999, 274); that is, being aware corresponds to “thinking 
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of” or “ paying attention to.” Accordingly, being aware of, say, the color frame does 
not merely mean that one has the ability to distinguish between colors; rather, it 
means that one consciously distinguishes between colors when thinking about the 
game. (Just like you can hear someone talk and not listen to them,  decision-makers 
filter out much of the data available to them as a way to reduce cognitive load.) 
To put it differently, an event of which an agent is unaware “is not necessarily one 
the agent could not conceive of, just one he doesn’t think of at the time he makes 
his choice” (Dekel, Lipman, and Rustichini 1998b, 524, italics in original). Thus, 
an event of which one is unaware is not the same as an event one has (thought 
about and) assigned probability zero: to see why the notions of unawareness and 
 probability zero are inherently different from each other, note that only an agent 
who had been unaware of an event might be affected by a question asking if that 
event may or may not happen.8

In summary, this paper contributes to the study of interactive unawareness by for-
mally analyzing the role of attribute awareness in coordination games. We then put 
the theory to the test by experimentally investigating how choice behavior is impacted 
by changes in attribute awareness; we find that the best explanation of the data is 
consistent with our model and solution concept. The remainder is organized as 
follows: Section I lays out the theory, Section II introduces the experimental design, 
Section III contrasts the model’s predictions against a set of null hypotheses based 
on the standard Bayesian paradigm, Section  IV presents the data, and Section V 
concludes.

I. Model and Solution Concept

A. Actions and Attributes

Our model proposes that players identify an action with a (possibly partial) 
description of its observable attributes; we will see that this ultimately affects stra-
tegic deliberations. Although some of our insights can easily be generalized for a 
broad variety of problems with a coordination element, for simplicity the analysis 
will center around a class of matching games where the action set consists of visual 
objects characterized by the “color,” “shape,” and “order” attributes. In this subsec-
tion we shall define such a class of games and elaborate on the notion of attributes; 
in the next subsection we will lay out the core components of the theory, namely, the 
players’ (partial) awareness of attributes and a novel solution concept.

Let Nature draw three objects from a  six-element set, one by one at random, 
and then place them in a column according to the order of selection, starting from 
the top. Denote by  A  the (unordered)  three-element collection of objects—hence-
forth, “triplet”—selected by Nature. Next, define a game such that the set of avail-
able actions corresponds to  A  and has generic member  a ; assume that  A  becomes 

8 For example, imagine that as you prepare to go out for a stroll, your partner asks you whether it might rain. 
If you had already assigned probability zero to the event “rain,” then you will be unmoved by such a question. If 
instead you had ignored that event—and you now notice it is cloudy outside—then you may react by taking an 
umbrella along.
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 common knowledge as soon as Nature selects a triplet. For each player  i, j  and for 
each action  a ∈ A , specify a player’s payoff to be a positive number  π  if players 
choose the same action  a , and zero otherwise.

Each of the actions  a ∈ A  is characterized by a tuple of attribute labels, as fol-
lows. Denote by  K  the set of attributes, with  K ≔  {C, S, O}  , where  C, S, O  respec-
tively denote the color, shape, and Nature’s order of selection/display of the objects. 
For each action (i.e., object)  a ∈ A , assume that  a ’s color, shape, and order attributes 
may each take on one value (“label”), respectively, from  C =  {cyan, lavender, tur-
quoise}  ,  S =  {triangle, diamond, pentagon}  , and  O =  {top, other}  . Intuitively, 
labels in  C  and  S  respectively represent the color and shape an object  a ∈ A  may 
be, whereas labels in  O  indicate whether  a  is or is not the first object to be selected 
by Nature and placed at the top of the column.9 Finally, a labeling function  l: A →   
formally specifies the relation between an action and its description, with    being 
defined as   ≔ C × S × O ; in a nutshell, a labeling function assigns to each action  
a ∈ A  a tuple of attribute labels  l (a)  ∈  .

Example: The definition of a labeling function says that each  a ∈ A  is character-
ized by a list of labels (one label per attribute). For instance,  l(a) = (turquoise, dia-
mond, top)  completely identifies the object (i.e., action) whose color, shape, and 
order of selection/display are respectively turquoise, diamond, and top. Further, if 
the subsequent two objects being drawn by Nature consisted of a cyan diamond and 
a turquoise pentagon, then the set of available actions  A  would be described as  l(A) 
= {(turquoise, diamond, top), (cyan, diamond, other), (turquoise, pentagon, other)}  .

B. Attribute Awareness and  Frame-Dependent Rationalizability

So far, we have assumed that each of the actions  a ∈ A  is characterized by a 
 3-tuple of attribute labels, under the implicit assumption that one is aware of (i.e., 
perceives and thinks about) all three attributes in  K , with  K ≔  {C, S, O}  . Below, 
we will do away with this implicit assumption: in doing so, we will posit that a 
player may identify an action with a “partial description,” which involves solely 
those attributes (i.e., a subset of  K ) she currently perceives, while ignoring the rest.

a. Partial Descriptions.—Before modeling the players’ awareness and beliefs, 
we must first introduce some notation to formalize how an action  a ∈ A  is labeled 
when using just a subset of the attributes   K ′   ⊆ K : to that purpose, we define the 
following system of projections.

For any subset   K ′   ∈  2   K   (where   2   K   is the set of all subsets of  K , i.e., the power 
set of  K ), let     K ′      denote a collection of tuples of labels involving solely the attri-
butes contained in   K ′   . Below, we refer to any subset   K ′   ∈  2   K   as a “frame.” For 

9 Depending on the level of descriptive detail or the emphasis one puts on a particular position, the modeler may 
assume alternative specifications of the order attribute, such as  O′′ =  {middle, other}   or  O′′′ =  {bottom, other}   
or else  O′′′′ =  { first, second, third}  . To keep the exposition simple, for the time being we assume that the order 
attribute is defined as  O ≡ O′ =  {top, other}  : as such, it limits itself to characterizing each available action  a ∈ 
A  as either “top” or “not top.” Still, our experimental predictions and econometric analysis will account for all 
possible specifications of the order attribute.
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each such   K ′   ∈  2   K  , a partial description   l  K ′    : A →    K ′      is given by the commuting  
diagram

    
 
   identity A    
 
       

A

  

        l         ⎯ →  

  


     ↓          ↓      

A

  

  
     l  K ′           ⎯ →  

  

   K ′    

    
 
  projection  
 
   

Example: As in our earlier example, let  l (a)  =  (turquoise, diamond, top)   iden-
tify the action  a ∈ A  whose color, shape, and order of display are, respectively, 
turquoise, diamond, and top. Now, the commuting diagram above implies that if, 
say,   K ′   =  {C, S}  , then it follows that   l {C,S}   (a)  =  (turquoise, diamond)  : we say 
that this is a less expressive description than  l (a)  =  (turquoise, diamond, top)  , in 
that   l  {C,S}    (a)   involves solely a  2-tuple of (color, shape) attribute labels. As another 
example, note that if   K ′   =  {C}  , then   l  {C}    (a)  =  (turquoise)  : this is yet a less 
expressive description, as it involves just one attribute label. Finally, note that if   
K ′   =  {∅}  , then   l  {∅}    (a)  =  (blank)  : here the interpretation is that  a  is character-
ized trivially as a “nondescript object.”

Having defined a system of partial descriptions, we move on to articulate what it 
entails for a player to be aware of some such descriptions. To that end, we build on the 
epistemic structure proposed by Heifetz, Meier, and Schipper (2013a), which rests on 
a lattice of state spaces ordered by their “expressive scope” (i.e., ordered according to 
the extent to which the spaces account for any relevant contingencies).10 In particular, 
the remainder of the subsection is organized into the following parts: in (b) we embed 
partial descriptions into alternative state spaces; in (c) we model awareness types, 
which specify the frames that players perceive and think about; in (d) we define a 
novel solution concept, which we call  frame-dependent rationalizability.

b. State Spaces.—We set out to define a state space for each and every subset of 
attributes   K ′   ∈  2   K  . Before doing so, we note that the members of   2   K   can be (par-
tially) ordered according to a superset relation  ⊇ , thereby obtaining the lattice struc-
ture depicted in Figure 1. Each such   K ′   ∈  2   K   may be thought of as a different (as a 
whole) vocabulary with which to express facts; with that in mind, we now construct 
a system of multiple state spaces as follows.

For each   K ′   ∈  2   K   fix a state space   Ω  K ′       —with generic member ω—in such a way 
as to obtain a lattice of disjoint state spaces    { Ω  K ′    }   K ′  ∈ 2   K    , with the partial order given 
by the superset relation on the underlying attributes. The general interpretation is 
that state spaces higher up in the lattice involve a more expressive vocabulary and 
thus provide a more thorough account of the possible states of the world. (Later on, 
we will see that each state space is interpreted as the particular viewpoint of a differ-
ent player type, as defined in part (c).) Some qualifications are in order.

10 Unlike the Heifetz, Meier, and Schipper (2013a,b) approach, which models awareness of actions per se, here 
we model awareness of the actions’ attributes. To do so, we shall define a state space for each subset of attributes 
(i.e., frame)  K′ ∈  2   K  . We will see that this construction allows us to restrict players’ beliefs in a natural way, which 
leads to a novel solution concept.
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For any space   Ω  K ′     , each of the states  ω ∈  Ω  K ′      is assumed to encompass all the 
relevant facts that can be expressed in terms of the   K ′    frame (i.e., expressible via 
the attributes contained in   K ′   ). Thus, each  ω ∈  Ω  K ′      implicitly includes player  i ’s 
potential   K ′   -specific description of  A , along with a description of opponent  j ’s frame   
K ″    (with   K ″   ⊆  K ′   ) and of  j ’s beliefs about  i ’s frame.11 Whereas the paper’s results 
apply to any lattice of state spaces satisfying this characterization, Figure 2 presents 
a specific lattice upon which our running example will be based.

c. Type Mappings.—We now move on to develop the players’ unawareness belief 
structure by formalizing the notion of “awareness types.” In what follows a player 
type is characterized by a mapping such that when  ω  obtains, the player may per-
ceive and think about some other state(s).

Formally, denote the union of the  above-defined state spaces by  Ω ≔  
⋃  K ′  ∈ 2   K      Ω  K ′      . For each  i  then define a type mapping   μ i    as a correspondence   μ i  : 
Ω →  ⋃  K ′  ∈ 2   K     ∆ ( Ω  K ′    )   ;12 this is required to satisfy standard properties of unaware-
ness structures (for discussion, see Heifetz, Meier, and Schipper 2013a). In short, 
a type mapping   μ i    assigns to each  ω ∈ Ω  a set of probabilities about the states 
of which  i  is aware at  ω . For instance, suppose that some state  ω  obtains: we 
interpret   μ i   (ω)  ( { ω ′  } )   and   μ i   (ω)  ( { ω ″  } )  , respectively, as the subjective proba-
bility about   ω ′    and   ω ″    that  i  holds “at  ω ” (i.e., when the true state is actually  ω ). 

11 The construction implies that the upmost space (i.e.,   Ω  {C, S, O}    ) provides the most exhaustive account of the 
resolution of all possible uncertainties in the model. Lower spaces have fewer states, as their expressive scope 
does not allow describing some contingencies; e.g.,   Ω  {C, S}     does not account for the eventuality that some opponent 
frames may comprise the order attribute.

12  ∆ ( Ω  K ′    )   denotes the set of probability measures over the state space   Ω  K ′     .

Figure 1. A Lattice Structure Defined by the Power Set of K, with an Arrow Connecting Any Two 
Elements That Are Ordered via a Superset Relation  ⊇ .

{C, S, O}

{C, O}{C, S} {S, O}

{C} {O}{S}

ϕ
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In other words, when  ω  obtains, player  i  thinks that   ω ′    or   ω ″    obtains, with probability 
  μ i   (ω)  ( { ω ′  } )   and   μ i   (ω)  ( { ω ″  } )  , respectively. Note that   ω ′    and   ω ″    may belong to a 
different (less expressive) space than the true state  ω .

In a nutshell,   μ i   (ω)   specifies a belief about each of the states that player  i  regards 
as possible when  ω  obtains. Whenever   μ i   (ω)  ∈ ∆ ( Ω  K ′    )   for some   K ′   ∈  2   K  , we 
informally refer to  i  as a   K ′    type (i.e.,  i ’s current belief is concentrated on   Ω  K ′     ); for 
any   K ′   ⊂ K  we say that  i  is “unaware” of  K \   K ′   .13

Example: Suppose that  ω ∈  Ω  {C,S,O}     and that the triplet drawn by Nature is describ-
able as  l (A)  =  { (cyan, triangle, top) ,  (turquoise, diamond, other) ,  (turquoise,  
pentagon, other) }  . Here the true state  ω ∈  Ω  {C,S,O}     corresponds to one of the eight 
states (i.e., black dots) on the  right-hand side of the upmost rectangular box, in  

13 The symbol  \  denotes set difference.

Key: Shape labels S = {triangle, diamond, pentagon} are represented pictorially for space-saving reasons; 

similarly, order labels O = {top, other} are given in binary code (with top ≡ 1, other ≡ 0). 

{(nondescript object), (nondescript object), (nondescript object)}

�{C,S,O}

�{S}

�ϕ

�{C}

�{C,O}�{C,S}

{(turq., ◇, 1), (cyan, ◇, 0), (turq., ⬠, 0)}

{(◇), (◇), (⬠)}

{(turq., 1), (cyan, 0), (turq., 0)}

{(cyan), (turq.), (turq.)}

{(turq., ◇), (cyan, ◇), (turq., ⬠)} {(cyan, ▷), (turq., ◇),(turq., ⬠)}

{(cyan, ▷, 1), (turq., ◇, 0), (turq., ⬠, 0)}

{(▷), (◇), (⬠)}

{(cyan, 1), (turq., 0), (turq., 0)}

ω '

ω̂ ω̃

ω'' ω ''' ω ''''

�{S,O}
{(◇, 1), (◇, 0), (⬠, 0)} {(▷, 1), (◇, 0), (⬠, 0)}

ω⁎ ω⁎⁎ ω⁎⁎⁎ ω⁎⁎⁎⁎

{(1), (0), (0)}
�{O}

Figure 2. A Lattice of State Spaces

Notes: Each of the rectangular boxes represents a   K ′   -specific state space   Ω  K ′     : each such box is interpreted as the 
state space perceived by a different player type, as defined in part (c). Within any one box each of the black dots 
represents a state ω: a state provides an account of all the relevant facts expressible in terms of the   K ′    frame, such as  
i ’s potential   K ′   -specific description of  A , plus a description of opponent  j ’s frame/beliefs. Each arrow points from 
a state to the corresponding information set perceived by a player type whose frame comprises one attribute less: 
such arrows are drawn for the sole benefit of the reader. (While player  i  knows how her state space maps to a less 
expressive space,  i  is unconcerned about any such “translation” since her state space incorporates in itself all the 
relevant facts that  i ’s type can express about the game.) The upmost space   Ω  {C,S,O}     contains states where  i ’s frame   
K ′    comprises color, shape, and order. For visual clarity this figure considers only two ordered triplets of objects, 
as indicated inside the upmost rectangular box; namely,   { (turquoise, ◇, 1) ,  (cyan, ◇, 0) ,  (turquoise, ⬠, 0) }   
and   { (cyan, ▷, 1) ,  (turquoise, ◇, 0) ,  (turquoise, ⬠, 0) }  . A state obtains once Nature has drawn a triplet. States 
enclosed in the same oval account for the same description of  A . Within any one oval each state accounts for a dif-
ferent  j  type (i.e., different opponent frame/beliefs): such states are enclosed in the same oval to indicate that, once 
Nature has drawn a triplet, player  i  is uncertain as to the opponent’s awareness. Spaces lower in the lattice have 
fewer states since each   Ω  K ′      accounts only for the eventuality of facing  j  types with frame   K ″   , for   K ″   ⊆  K ′   .
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Figure 2: in all of those eight states, player  i ’s description of the triplet is given by  
l (A)  , as indicated directly above the top right oval. Note that each of those states 
accounts for the eventuality of facing an opponent  j  with different frame/beliefs (i.e., 
different type): those eight states are enclosed in the same oval to indicate that  i  is 
aware of the drawn triplet’s description in terms of   {C, S, O}   yet is uncertain about  
j ’s awareness, under the assumption that there are eight possible  j  types. (More 
generally, Figure 2 assumes that, for any drawn triplet, there is one state for each 
opponent frame that is expressible via   K ′   : i.e., there is one state per   K ″   ∈  2    K ′    ; note 
that our results do not depend on this particular assumption.14) In summary, this 
example models the case where  i  is aware of all the attributes but is uncertain about  j ’s 
awareness: accordingly, once Nature has drawn the triplet above,  i ’s type mapping 
will assign positive conditional probability to the aforementioned eight states and 
probability zero to any other states in   Ω  {C,S,O}    .

Next, consider the case where  i ’s type is   K ′   =  {S, O}  , i.e.,  i  is unaware of the 
color attribute. In terms of the model, this means that  i ’s type mapping will assign 
positive conditional probability to states in   Ω  {S,O}    ; formally,   μ i   (ω)  ∈ ∆ ( Ω  {S,O}   )  .  
That is,  i  will perceive solely the states in   Ω  {S,O}     instead of the states in   Ω  {C,S,O}    .  
More specifically, in the case of the triplet above, the possible states that  i  per-
ceives are depicted by the four rightmost black dots in the second row of the lattice, 
denoted by   ω   ∗ ,  ω   ∗∗ ,  ω   ∗∗∗ ,  ω   ∗∗∗∗  : in all of those four states,  i ’s description of the trip-
let is given by   l  K ′     (A)  =  { (triangle, top) ,  (diamond, other) ,  (pentagon, other) }  . To 
see why this information set has just four states, recall that—by construction—each   
Ω  K ′      includes only facts expressible via the attributes in   K ′   : this implies that states in   
Ω  K ′      can account only for the eventuality of facing an opponent  j  with frame   K ″   , for   
K ″   ⊆  K ′   . So, if  i ’s type is   K ′   =  {S, O}  , then  i ’s perceived states will account only 
for opponent frames   K ″   ∈  2    K ′    , that is,   K ″   ∈  { {S, O} ,  {S} ,  {O} , ∅}  . The interpre-
tation is that if  i  is unaware of the color attribute,  i  will solely think of states where  
j  types describe  A  via, respectively,  shape-order labels, or only shape labels, or only 
order labels, or no descriptive labels. Thus, if  i  is unaware of the color attribute,  i  
will ignore any  j  types whose frames involve colors.

d.  Frame-Dependent  Rationalizability.—We now present a new solution con-
cept. To do so, we build on Dekel, Fudenberg, and Morris’s (2007) notion of interim 
correlated rationalizability, which captures interactions where there is a correlation 
between the state of the world and players’ conjectures about the actions of oth-
ers. Like the rationalizability notion in  complete-information games (Bernheim 
1984; Pearce 1984), Dekel, Fudenberg, and Morris’s (2007) concept is defined via 
an  iterated-deletion procedure. At each iteration an action survives for a type only 
if (i) it is a  best-response to a belief assigning positive probability to  type-action 

14 Thus, if   K ′   =  {C, S, O}  , there is one state for each of the eight members of the power set of   {C, S, O}  ;  
i.e., one state per   K ″   ∈  { {C, S, O} ,  {C, S} ,  {C, O} ,  {S, O} ,  {C} ,  {S} ,  {O} , ∅}  . The interpretation is that—in 
each state—there is a  j  type that uses, respectively,  color-shape-order labels, or only  color-shape labels, or only 
 color-order labels, etc.; note that as per our definition of a state, each of those states incorporates  j ’s respective beliefs 
about  i ’s frame. (In this connection we note that prior research proved the existence of a universal unawareness type 
space containing all belief hierarchies; see Heifetz, Meier, and Schipper’s 2011 working paper and Heinsalu 2014.)
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pairs of the opponents that have not yet been deleted; (ii) it is consistent with that 
type’s beliefs about others and chance. Here, to allow for unawareness, we provide a 
notion of rationalizability whereby  i  does not  best-respond to all the  j  types but only 
to those types of which  i  is aware (i.e., as specified by   μ i   (ω)  ). Another key novelty 
of our proposed solution concept is that it incorporates a pair of  frame-dependent 
restrictions on beliefs, as follows.

The first restriction (“principle of indifference”) reflects Jacob Bernoulli’s prin-
ciple of insufficient reason, in the following sense: if one of the  j  types (frames) of 
which  i  is aware attaches the same label to two or more actions, then  i  believes that 
that  j  type will play those actions with the same probability. The second restriction 
(“oddity is prominence”) says that if one of the  j  types (frames) of which  i  is aware 
attaches a distinct label to one action, and a common label to the other actions, then  
i  believes that  j  type will play the oddity with a higher probability.

Formally, for each player  i  there is a (pure) strategy   s i  : Ω → A  with the property 
that   μ i   ( ω ′  )  =  μ i   (ω)  ⇒  s i   ( ω ′  )  =  s i   (ω)  , where  ω,  ω ′    denote two states that may 
or may not belong to the same space (i.e., this property implies that  i ’s strategy is a 
function of the set of states  i  perceives). Next, denote by   B i   (ω)   the set of joint prob-
ability distributions—with generic member   β i   —over actions and states  i  perceives 
(when ω obtains). We interpret   β i   ( { a ′  ,  ω ′  } )   as a belief  i  holds about the strategy  j  
might take at   ω ′   .

Given this, let   β i   ( { a ′  ,  ω ′  } )  ⋅  u i   (a,  a ′  ,  ω ′  )   denote player  i ’s expected utility from 
strategies   s i   ( ω ′  )  = a  and   s j   ( ω ′  )  =  a ′   , where  a,  a ′    are generic members of  A . 
Finally, define  frame-dependent rationalizability (FDR) inductively as a sequence 
of iterations (indexed   q )     of beliefs   B  i  

q   and strategies   R  i  
 q   of player  i , as follows.

DEFINITION: For  ω ∈ Ω  with   μ i   (ω)  ∈ Δ ( Ω  K ′    )  , let   R  i  
 q=0  (ω)  = A . For  q > 0 ,

  B  i  
q  (ω)  ≔

 

⎧

 

⎪
 ⎨ 

⎪
 

⎩

  β i   ∈ Δ (A ×  Ω  K ′    ) :   

 (0)   marg    Ω  K ′        β i   =  μ i   (ω) ;

   
 

 (1)  Principle of indifference: if  μ j   ( ω ′  )  ∈ Δ ( Ω  K ″    )  and  l  K ″     (a)  =  l  K ″     ( a ′  ) ,

       
 

then  β i   ( {a,  ω ′  } )  =  β i   ( { a ′  ,  ω ′  } ) , for a,  a ′   ∈ A;

     
 

 (2)  Oddity is Prominence: if  μ j   ( ω ′  )  ∈ Δ ( Ω  K ″    ) 

     
 

and there exists an action  a ″   such that

    
 

 l  K ″     ( a ″  )  ≠  l  K ″     (a) ,  l  K ″     ( a ″  )  ≠  l  K ″     ( a ′  ) , with  l  K ″     (a)  =  l  K ″     ( a ′  ) ,

      
 
then  β i   ( { a ″  ,  ω ′  } )  >  β i   ( {a,  ω ′  } )  and  β i   ( { a ″  ,  ω ′  } )  >  β i   ( { a ′  ,  ω ′  } ) , for a,  a ′  ,  a ″   ∈ A;

        
 (3)  Belief in  (q − 1) -Rationality:  β i   ( {a,  ω ′  } )  > 0 ⇒ a ∈  R  j  

q−1  ( ω ′  ) , for a ∈ A
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 ⎬ 

⎪
 

⎭
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   R  i  
 q  (ω)  ≔  
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⎪

 ⎨ 
⎪

 

⎩
 a ∈  R  i  

q−1  (ω) :   
There exists  β i   ∈  B  i  

q  (ω)  such that
    

a ∈  arg max  
 a ′  ∈A

     ∑  ( a ″  , ω ′  ) ∈A× Ω  K ′      
 
     β i   ( { a ″  ,  ω ′  } )  ⋅  u i   ( a ′  ,  a ″  ,  ω ′  ) 

  

⎫
 

⎪

 ⎬ 
⎪

 

⎭
 . 

The set of player  i ’s  frame-dependent rationalizable (FDR) strategies is   R i   (ω)  =  
⋂ q=0  

∞     R  i  
 q  (ω)   .

Prior to illustrating the definition through a pair of results, a few comments are in 
order. Condition (0) above requires that  i ’s various beliefs be internally consistent, 
in the sense that the marginal of   β i    over   Ω  K ′      must be equal to   μ i   (ω)  . Conditions 
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(1)–(2) define the belief restrictions discussed above.15,16 Condition (3) is a stan-
dard feature of rationalizability concepts, requiring that (at each iteration  q )  i  assign 
positive probability only to  type-action pairs of the opponent that have not been 
deleted yet (i.e., that are rationalizable at  q − 1 ). Finally, the set of  i ’s FDR strategies 
is defined as the collection of actions that survive an infinite sequence of iterations.

OBSERVATION 1: Consider a matching game where  i ’s type perceives a single 
attribute (besides  ∅ ): assume that this attribute induces an oddity. If  i ’s type assigns 
any positive probability to a state where  j  is aware of the oddity, then the unique 
FDR strategy is for  i  to play that oddity.

PROOF: 
The observation is easily proved by example. To that purpose, fix an arbitrary 

matching game and a lattice of state spaces. Without loss of generality, consider 
a triplet describable as  l (A)  =  { (turquoise, diamond, top) ,  (cyan, diamond, other) , 
 (turquoise, pentagon, other) }  . Of the several possible states associated with this 
triplet (which in Figure 2 are depicted by the eight black dots on the  left-hand side 
of the upmost rectangular box), suppose that some  ω ∈  Ω  {C,S,O}     obtains.

Consider an arbitrary   K ′    comprising a single attribute, and assume that player  
i  is a   K ′    type: for instance,   K ′   =  {C}  . Accordingly, when  ω ∈  Ω  {C,S,O}     obtains, 
 i ’s type mapping will assign positive conditional probability solely to some states 
in   Ω  {C}    ; formally,   μ i   (ω)  ∈ ∆ ( Ω  {C}   )  . (In Figure 2 the states of which  i  is aware 
are depicted by the two leftmost black dots in the third row of the lattice, denoted 
by   ω ˆ    and   ω ̃   .) Note that each of those perceived states describes the action set as 
  l  K ′     (A)  =  { (cyan) ,  (turquoise) ,  (turquoise) }  : each such state accounts for one of 
the two opponent frames   K ″    that  i  can think of, with   K ″   ∈  2    K ′     (i.e., if  i ’s type is   
K ′   =  {C}  , then  i  can only think of   K ″   ∈  { {C} , ∅}  ).

We move on to apply our definition of FDR strategies to the game above. We 
begin with condition (0): this requires that  i ’s various beliefs be internally consis-
tent, in the following sense. Consider one of  i ’s perceived states, say,   ω ˆ   . Denote 
by   β i   ( {a,  ω ˆ  } )    i ’s belief that the  j  type at   ω ˆ    might play  a . For any action set 
 A =  {a,  a ′  ,  a ″  }  , condition (0) says that   β i   ( {a,  ω ˆ  } )  +  β i   ( { a ′  ,  ω ˆ  } )  +  β i   ( { a ″  ,  ω ˆ  } )   
must be equal to   μ i   (ω)  ( { ω ˆ  } )   (recall that the latter expression denotes the probabil-
ity  i  assigns to   ω ˆ   ).

In addressing conditions (1)–(2), let   ω ˆ    refer to the state where  j ’s type is 
  K ″   =  {C}  . That is, according to player  i ,   μ j   ( ω ˆ  )  ∈ Δ ( Ω  {C}   )  : this means that  

15 As for (1), note that different formulations of Bernoulli’s principle of “insufficient reason” have found appli-
cation in previous models, like the Harsanyi and Selten (1988, 70–74) principle of invariance with respect to iso-
morphisms, Crawford and Haller’s (1990) attainable strategies, Bacharach’s (1993) definition of option sets, and 
related definitions in Casajus (2000); Janssen (2001); and Blume and Gneezy (2010). Unlike us, all these models 
use the principle of insufficient reason within the context of an equilibrium solution.

16 As for (2), note that the present formulation emphasizes simplicity over generality. Yet the idea behind the 
principle (i.e., a distinct minority stands out) is easily extended to games with more than three actions (e.g., the 
formulation may be generalized so that beliefs are inversely related to the frequency of each label). Incidentally, it 
is worth noting that Battigalli and Siniscalchi’s (2003) notion of  ∆ -rationalizability incorporates belief restrictions 
that are similar in spirit to (but more general than) our approach; their concept, however, does not allow for unawareness, 
nor does it address prominence.
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i  believes that the  j  type at   ω ˆ    describes  A  as   l  K ″     (A)  =  { (cyan) ,  (turquoise) , 
 (turquoise) }  . Hence, condition (1) says that player  i  believes that the  j  type at 
  ω ˆ    will play the two  same-label ( turquoise ) actions with equal probability. Condition 
(2) says that player  i  believes that this  j  type will play  cyan  with probability greater 
than each  turquoise  action.

Next, let   ω ̃    refer to the state where  j ’s type is aware of no attributes, that is,   
K ″   =  {∅}  . Here, according to player  i ,   μ j   ( ω ̃  )  ∈ Δ ( Ω  {∅}   )  , in which case player  
i  believes that the  j  type at   ω ̃    describes  A  as   l  K ″     (A)  =  { (nondescript object) , 
 (nondescript object) ,  (nondescript object) }  . Hence, condition (1) says that player  i  
believes that the  j  type at   ω ̃    will play (all)  same-label actions with equal probability. 
We further note that condition (2) has no bite here.

Based on the analysis above, at the first iteration (i.e.,   q = 1 )     the belief operator   
B  i  

1  (ω)   includes any probability distribution   β i    such that (i) the  j  type at   ω ˆ    is more 
likely to play  cyan , and (ii) the  j  type at   ω ̃    plays each of the three actions with equal 
probability. (Note: trivially, any   B  i  

1  (ω)   satisfies condition (3) since by definition 
  R  j  

 0  (ω)  = A .) What about   R  i  
1  (ω)  ? It is easy to see that the only  best-response 

to any such   β i   ∈  B  i  
1  (ω)   is for  i  to play  cyan . This in turn implies that, owing to 

condition (3),   B  i  
2  (ω)   and successive iterations of the belief operator will remove 

from consideration any   β i    such that the  j  type at   ω ˆ    plays  cyan  with probability less 
than 1. To conclude, as long as player  i  regards   ω ˆ    as possible (i.e., for any positive 
  μ i   (ω)  ( { ω ˆ  } )  ),  i ’s expected utility is maximized by playing the color oddity. Thus, 
the only FDR strategy is for  i  to play that oddity.  ∎ 

Note that although the above behavioral prediction (that a player will “choose 
an oddity”) could be accounted for by other solution concepts, the underlying epis-
temic assumptions would differ greatly. In fact, our solution concept is characterized 
simply by common belief in rationality and in the two belief restrictions (principle 
of indifference, oddity is prominence). By contrast, solutions in the form of equilib-
rium refinements remain controversial as a predictive device due to their demanding 
assumptions as to what the players must know to achieve coordination; also, note 
that normative models presume that the players’ perception is fixed, and so they do 
not address the case where perception changes during the game. Conversely, our 
solution concept intuitively justifies how an increase in one’s attribute awareness 
may lead to one’s change in strategy.

OBSERVATION 2: Consider the same scenario as in Observation 1, but now sup-
pose that before taking action,  i  notices that (at least) one  previously ignored attri-
bute induces another oddity. If the state where  j  is aware of a new oddity is assigned 
(by  i ’s updated type) a higher probability than the other states, then the unique FDR 
strategy is for  i  to play that new oddity.

PROOF: 
Without loss of generality, suppose (as in Observation 1) that  A  is describable 

as  l (A)  =  { (turquoise, diamond, top) ,  (cyan, diamond, other) ,  (turquoise, penta-
gon, other) }   and that some state  ω ∈  Ω  {C,S,O}     obtains. Next, assume that before  
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taking action, player  i ’s type   K ′    changes from   {C}   to, say,   {C, S}  . This increase 
in awareness implies that when  ω ∈  Ω  {C,S,O}     obtains, player  i ’s (updated) type 
mapping will assign positive conditional probability to some states in   Ω  {C,S}    ; for-
mally,   μ i   (ω)  ∈ ∆ ( Ω  {C,S}   )  .17 (In Figure 2 the new possible states of which player  i  
has become aware are depicted by the four leftmost black dots in the second row of 
the lattice, denoted by   ω ′  ,  ω ″  ,  ω ‴  ,  ω ⁗   .) Note: each of those perceived states accounts 
for one of the four opponent frames   K ″    of which  i  can think, with   K ″   ∈  2    K ′     (i.e., 
if  i ’s type is   K ′   =  {C, S}  , then  i  can only think of   K ″   ∈  { {C, S} ,  {C} ,  {S} , ∅}  ).

Per conditions (1)–(2) the belief operator   B  i  
1  (ω)   now includes any probabil-

ity distribution   β i    such that (i) the  j  type (at   ω ″   ) with   K ″   =  {C}   is more likely 
to play the color oddity, (ii) the  j  type (at   ω ‴   ) with   K ″   =  {S}   is more likely to 
play the shape oddity, and finally, (iii) the  j  type (at   ω ⁗   ) with   K ″   = ∅  is just as 
likely to play each of the three actions.18 In this case an analogous line of reasoning 
as in Observation 1 implies that if the state with   K ″   =  {S}   is assigned a higher 
probability than the other states,  i ’s expected utility is maximized by playing the 
shape oddity (i.e.,  pentagon ). If so, the only FDR strategy is for  i  to play this “new”  
oddity.  ∎ 

II. Experimental Design

Below, we put our model to the test. To do so, we present the following lab 
experiment.

At the beginning of the experiment, each person is assigned to a computer (the 
experiment was conducted using zTree; Fischbacher 2007) and paired with an 
unknown partner. Participants are then told that everyone is being shown the same 
six objects on her own screen: specifically, participants see six “blocks” (i.e., col-
ored geometric shapes), as described in Table 1; note that no such numbers or labels 
are shown to the subjects.

Initially, the objects are loosely arranged in a hexagonal fashion (one per vertex) 
and collectively occupy the  left-hand side of the screen. After each subject has viewed 
the six objects on her screen, the computer program selects three objects—one by 
one—by sliding them and placing them in a column (on the  right-hand-side of the 
screen) according to the order of selection, starting from the top. (The  three-object 
selection is identical for each participant; note that the experimental game, including 
its actions and attributes, reflects the formal model in Section IA.19) The rest of the 

17 The updated type mapping should reflect the prior mapping, when possible. For instance, the sum of the 
probabilities assigned to any states involving color (i.e.,   K ″   =  {C, S}   or   K ″   =  {C}  ) after the change in awareness 
should be equal to the probability assigned to the one state involving color (i.e.,   K ″   =  {C}  ) before the change.

18 Note that the beliefs about the  j  type with   K ″   =  {C, S}   are not restricted by conditions (1)–(2). This is 
because a description in terms of multiple attributes involves three distinct labels (one  color-shape label per action); 
that is,   l  K ″     (A)  =  { (turquoise, diamond) ,  (cyan, diamond) ,  (turquoise, pentagon) }  . Since no two labels are iden-
tical, conditions (1)–(2) have no bite.

19 To ensure that the  setup above is common information, a summary description of the game—including the 
following message—is read aloud by the experimenter: “The computer program will select three of the objects, and 
will then display those three objects to every participant in the same fashion and order.” Relatedly, we note that the 
design we presented in early  working paper versions of this study involved slightly different experimental instruc-
tions; following a reviewer’s suggestion, we edited the instructions to remove a possible ambiguity and  reran the 
experiment, obtaining new (but qualitatively similar) data.
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objects subsequently disappear from the screen, and subjects complete a few tasks, 
described below. In the end, each subject is asked to indicate her choice of one of 
the three objects, with the goal of coordinating with her partner in the pair. Each 
member of a pair receives a payoff of $1.25 if each chooses the same object; each 
receives nothing otherwise.

Our  between-subjects design includes the Baseline and  All-Aware treatments. 
The list below details the entire sequence of events in the Baseline treatment.

 (i) Each subject is assigned to a computer terminal and is shown the paper 
instructions.

 (ii) Each subject is paired with an unknown partner. Subjects are presented six 
objects on their screen, three of which are later selected by the program and 
put in a column.

 (iii) An  on-screen message prompts subjects to label those three objects  
(“PART A”).

 (iv) An  on-screen message prompts subjects to estimate the probabilities of the 
three objects being chosen by others (“PART B”); they are informed that 
good guesses will be rewarded with an additional payment.20

 (v) An  on-screen message prompts subjects to choose an object by ticking the 
relevant box; they are reminded that their payoff will be $1.25 if both mem-
bers of the pair choose the same object, $0 otherwise (“PART C”).

 (vi) Steps (ii)–(v) are repeated for nine more rounds, whereby in each round a 
new  three-object selection is implemented by the computer program and 
shown to each member of a pair. (In each round participants are randomly 
assigned to another pair and are so informed.) No feedback is given between 
rounds.

 (vii) Payment.

20 Subjects are shown a pie chart with three spokes, which they may adjust so that a sector’s relative area represents the 
estimated likelihood of an object being chosen by others (as an identifier, within each sector there is the label the subject 
entered at step (iii)). We incentivized this task by informing subjects that if at least one of their three estimates differed by no 
more than 5 percentage points from the realized value, they would receive an extra payment of $0.25 at the end of the session. 
No feedback was given before the end of the session. We note that this elicitation mechanism has a simplicity advantage 
over alternative mechanisms: as such, it minimizes the need for lengthy instructions. Like other mechanisms, this one has 
drawbacks too; e.g., subjects are directly incentivized to state (at least) one true estimate, which in some cases may cause 
slight deviations from truthful reporting.

Table 1—The Six Objects in the Experimental Game 
(object numbers/labels not shown to the subjects)

Object no. 1 2 3 4 5 6

Color Cyan Cyan Lavender Lavender Turquoise Turquoise
Shape Triangle Diamond Triangle Pentagon Diamond Pentagon
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A few comments are in order. We begin by noting that each of the ten rounds 
presents a different  three-object selection, and so each round differs from the oth-
ers in the characteristics of the available action set. (No feedback is given between 
rounds, that is, games.) To ensure that oddities are balanced across positions, our 
design implements  prerandomized blocks; this procedure also ensures that partici-
pants across sessions are presented with the same sequence of triplets.21,22

We stress that the objects are not  pre-labeled, so that we do not impose exogenous 
frames. Still, to help subjects identify options when navigating across tasks, at the 
beginning of each round, subjects are invited to type a short text ( 3–15 characters) 
in each of three boxes beside the objects. Note that the labeling is for the subject’s 
reference only, and our hypotheses do not rely on such idiosyncratic strings (short 
character strings are not necessarily intelligible or clear-cut, and were we to use such 
 free-form inputs in the analysis, we would have to exercise our discretion in assign-
ing a value to each alphanumeric string, undermining the tests’ objectivity). In brief, 
our analysis revolves around the guess and choice data, respectively elicited in Part B 
and Part C of each round. For the instructions see the online Appendix.

The design of the  All-Aware treatment is the same as the Baseline except for 
PART B, which presents three extra questions, as shown in the following transcript:

Recall that—in Part C of the experiment—you will be prompted to pick 
one object in order to coordinate with your partner. Prior to that, we would 
like to know what you think about other participants in this room. Please 
answer the following questions by moving the sliders to the desired per-
centages. Note: your partner will not be asked to answer these questions.

1) How likely do you think it is that the other participants have noticed 
the order in which the objects have been drawn by the computer program? 
Please move the below slider …

2) How likely do you think it is that the other participants have noticed the 
different colors of the objects? Please move the below slider …

3) How likely do you think it is that the other participants have noticed the 
different shapes of the objects? Please move the below slider … 

Note that the order in which questions  1–3 are presented is randomized in each 
round. Subjects enter their beliefs by moving a slider (i.e., one slider for each ques-
tion) to the desired percentage, with the slider ranging from 0 percent to 100 per-
cent. Note that the purpose of the questions is to make subjects privately aware 

21 At the beginning of every round, subjects are shown the same six blocks as in round 1, but three different 
blocks are subsequently selected in each round. The initial position of the six blocks is  reshuffled in every succes-
sive round, but it is identical for all subjects taking part in the same round.

22 More explicitly, the constrained  prerandomization ensures that (i) color/shape oddities are balanced across 
positions (i.e., top, middle, and bottom of the column); (ii) the sequence of games is representative of the theo-
retical distribution of triplets, as follows. Given the attributes in Table 1, the theoretical probability that Nature 
randomly selects a triplet with no color or shape oddities is 1/10 (see objects   {1, 4, 5}   and   {2, 3, 6}   in Table 1). 
Furthermore, the probability of a triplet containing one color oddity is 1/3 (e.g.,   {1, 2, 6}  ); the probability of a triplet 
containing one shape oddity is 1/3 (e.g.,   {2, 3, 5}  ); the probability of a triplet containing both color and shape 
oddities is 1/3 (e.g.,   {4, 5, 6}  ).
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of multiple attributes: to that end,  All-Aware participants are matched into pairs 
with Baseline participants; accordingly, we inform  All-Aware participants that their 
(Baseline) counterparts are not exposed to questions  1–3. This feature of the design 
ensures that  All-Aware participants believe—correctly—that their partners’ aware-
ness has not been raised exogenously. (Obviously, to keep the Baseline participants’ 
awareness unchanged, they are not informed about the extra questions to which their 
 All-Aware counterparts are exposed.)

After presenting the questions above, the  All-Aware treatment proceeds to the 
task described at step (iv) of the Baseline. The rest of the treatment is identical to 
the Baseline.

Prior to stating our hypotheses, we note that it is easy for one to distinguish 
objects according to an attribute if one thinks about that attribute. That is, barring 
some rare eye disorder, one could fail to see differences in the objects only if one 
did not pay attention to the attributes: such an unconscious neglect corresponds to 
the  game-theoretic notion of unawareness. Per the epistemic literature, “being aware 
of an event” means that the event is taken into account when making a decision 
(Modica and Rustichini 1999, 274). Hence, being aware of, say, the color frame 
does not mean that one can generally distinguish between colors; rather, it means 
that one consciously distinguishes between colors when thinking about the game. 
So, an event of which an agent is unaware “is not necessarily one the agent could 
not conceive of, just one he doesn’t think of at the time he makes his choice” (Dekel, 
Lipman, and Rustichini 1998b, 524, italics in original).

III. Experimental Hypotheses

We now show that our model produces numerous intuitive predictions regarding 
the treatments above; such predictions will be articulated in the form of alternative 
hypotheses, while null hypotheses will be based on the “standard”  single-state-space 
Bayesian paradigm (i.e.,  incomplete-information models without unawareness). In 
doing so, we spell out how our model’s assumptions are at odds with the default 
economic model of knowledge.23

We start by considering predictions that relate specifically to the  All-Aware treat-
ment. Recall that the  All-Aware treatment manipulation involves a sequence of 
 pre-play questions about whether others have or have not noticed the three (color, 
shape, and order) attributes of the currently drawn triplet. Those questions may be 
viewed as tautologies, as in “ E  is the case or  ¬E  is the case,” where  E  and  ¬E  respec-
tively represent the event such that  j  has and has not noticed an attribute.

Now, in a Bayesian game one is assumed to always know the full set of states; 
given the standard models’ underlying properties, then for any event  E  (i.e., for any 
subset of states) one is always aware of  E  and  ¬E  (Dekel, Lipman, and Rustichini 
1998a). This implies that one’s awareness level would be unaffected by the  questions 

23 Dekel, Lipman, and Rustichini (1998a, theorems 1, 2, pp.  166–69) prove that standard models of knowledge pre-
clude unawareness (the case where one does not know an event and does not know that one does not know it): the rough 
intuition is that if an agent knows the full set of states, then she cannot be unaware of any events; as we shall see, the null 
hypotheses below follow from this result. In analyzing the data (in Section IV), we will also address early models with 
“ nonstandard” information structures, such as Bacharach (1993).
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above. Further, note that Bayesian games presume common knowledge of the infor-
mation structure: this precludes  i  from believing that  j  is uncertain about some-
thing, without  j  knowing so. In other words, a player cannot conceive of the opponent 
unconsciously ignoring something. Accordingly, our first null hypothesis (H1) is that 
 All-Aware participants do not think that their Baseline counterparts may overlook fea-
tures of the game such as the actions’ attributes.24

HYPOTHESIS 1 (H1):  All-Aware participants believe that their Baseline counter-
parts notice with certainty any differences in the objects with respect to colors, 
shapes, and order.

By contrast, our alternative hypothesis is that “ All-Aware participants believe 
that others may fail to notice some features of the action set, with such beliefs 
varying across players as well as games.” To see how this alternative hypoth-
esis stems from our model, note that we circumvent the Dekel, Lipman, and 
Rustichini (1998a) impossibility result (that standard models preclude unaware-
ness) by building on Heifetz, Meier, and Schipper’s (2006, 2013a) system 
of multiple state spaces; thus, here the full information structure is not com-
mon knowledge. With regard to the experiment, our model says that each 
 All-Aware participant personifies a player with   μ i   (ω)  ∈ ∆ ( Ω  {C,S,O}   )   who (per-
ceives all attributes and) is uncertain about the opponent’s perception. In short, 
our model’s alternative hypothesis is that  All-Aware participants consider it possible 
that their counterparts might not notice every feature of the actions; so their beliefs 
about whether others perceive some attribute (henceforth, “awareness beliefs”) may 
each be less than 100 percent. (Instead, barring the rare case where people may be 
affected by an untreated eye disorder, standard models imply that any such elicited 
beliefs should be close to 100 percent.25)

We proceed to H2. This is a  threefold hypothesis (with components a, b, c) con-
cerning the relation between awareness beliefs and behavior. Following up on the 
discussion above, note that standard models imply no particular relation between 
one’s strategy and one’s awareness beliefs (since each elicited belief  ≈ 1 ); so they 
entail the next null hypotheses.

24 Bayesian models for games with incomplete information (Harsanyi 1967, 1968a,b) formally capture con-
scious uncertainty. That is, a situation where a player knows that she cannot distinguish elements of the space of 
uncertainty. Such a space is assumed to be commonly known and may include opponents’ strategies or moves by 
Nature (or both); note that—in the context of our experiment—the latter case would correspond to a player who 
knows that she cannot tell apart the triplets, hence the available actions, as she cannot see well. (Such a model would 
aptly represent a situation where it is common knowledge that players have an untreated eye disorder; however, it is 
an implausible characterization of our experiment, due to the low occurrence of any such impairments. In fact, the 
common type of color blindness consists of a decreased ability to tell green from red: this cannot affect our games 
since all the objects involve shades of blue.)

25 This and all other null hypotheses below are based on a standard model, defined as follows: consider a coordi-
nation game as described in the experimental instructions; next, assume that—as the game begins—players become 
commonly aware that the actions vary in color, shape, and order; finally, fix an (arbitrary) epistemic type space, whereby 
each type is associated with a hierarchy of beliefs about the players’ behavior conditional on the drawn triplet. Note 
that this is a Bayesian game (without unawareness) where the space of uncertainty consists of the opponents’ actions, 
given the observed triplet.
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HYPOTHESIS 2A (H2.a): The frequency with which  All-Aware participants choose 
color oddities is not related to their belief about others noticing the different colors 
(for brevity, this belief is hereafter referred to as   μ  i  

C    ).

HYPOTHESIS 2B (H2.b): The frequency with which  All-Aware participants choose 
shape oddities is not related to their belief about others noticing the different shapes 
(henceforth,   μ  i  

S   for brevity).

HYPOTHESIS 2C (H2.c): The frequency with which  All-Aware participants choose 
top, middle, or bottom objects is not related to their belief about others noticing the 
order of the objects (henceforth,   μ  i  

O   for brevity).

In brief, null hypothesis H2.a applies to  All-Aware participants in games contain-
ing color oddities. The alternative hypothesis to H2.a is that “the frequency of play 
of color oddities is positively related to   μ  i  

C  , and not to   μ  i  
S   or   μ  i  

O  .” To see how this 
alternative hypothesis stems from our model, recall that player  i ’s FDR strategy cor-
responds to the oddity induced by the attribute  most likely noticed by the opponent 
(see Observation 2 for a proved statement). In particular, when  i  believes that others 
are more likely to notice the different colors (relative to shapes and order, i.e., when   
μ  i  

C  ≥  μ  i  
S   and   μ  i  

C  ≥  μ  i  
O    ),  i  should choose a color oddity if there is one. Therefore, 

to test whether a color oddity is indeed  i ’s FDR strategy, the experimenter must 
verify that the frequency of play of color oddities is positively related to   μ  i  

C  , and not 
to   μ  i  

S   or   μ  i  
O  .

We turn to H2.b, which applies to  All-Aware participants in games with shape 
oddities. Thus, following the same reasoning as above, our model’s alternative 
hypothesis to H2.b is that “the frequency of play of shape oddities is positively 
related to   μ  i  

S  , and not to   μ  i  
C   or   μ  i  

O  .”
We move on to address H2.c, which concerns the  All-Aware participants’ pro-

pensity to choose the  nth option. Prior to elaborating on our test, we note that 
whereas color and shape attributes induce a natural labeling, the same is not nec-
essarily true of the order attribute. In fact, depending on the level of descriptive 
detail or the emphasis one puts on a particular position, the order attribute could 
be associated with any of the following labelings: i.   ( (top) ,  (other) ,  (other) )  ;  
ii.   ( (other) ,  (middle) ,  (other) )  ; iii.   ( (other) ,  (other) ,  (bottom) )  ; iv.   ( (first) ,  

(second) ,  (third) )  .26 While labeling iv does not generate “order oddities,” i, ii, iii 
respectively pull a subject toward the top, middle, and bottom blocks (thus possibly 
away from any color or shape oddities). To simplify the exposition, we have so far 
identified the order attribute with the first labeling (as per footnote 9); yet in con-
ducting the data analysis, we shall account for all the labelings above. Accordingly, 
our model’s alternative hypothesis to H2.c is that “the frequency of play of (just) one 

26 Note that each such labeling has analogous translations that entail the same partition. For instance, labeling 
iv is equivalent to   ( (top) ,  (middle) ,  (bottom) )  , and to   ( (rishon) ,  (sheni) ,  (shlishi) )  , and to   ( (primo) ,  (secondo) , 
 (terzo) )   … 
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of the three positions is positively related to   μ  i  
O  , whereas no position is positively 

related to   μ  i  
C   or   μ  i  

S  .”27

In the following we contrast the  All-Aware treatment with the Baseline. Recall 
that the treatments are identical except for the three extra questions asked of 
 All-Aware participants, which may be viewed as tautologies (i.e., “ E  is the case or  
¬E  is the case”). For any event  E , remember that in a standard model one is always 
aware of  E  and  ¬E : it follows that one cannot learn (from the  All-Aware questions) 
anything that one did not know already. Standard models therefore predict that the 
 All-Aware questions have no impact on participants’ behavior (regardless of the solu-
tion concept). So there should be no behavioral differences across treatments, as in the 
following null hypothesis.28

HYPOTHESIS 3 (H3): Average choices do not vary between the Baseline and 
 All-Aware treatments.

By contrast, our model’s alternative hypothesis is that “average choices vary 
across treatments” due to an increase in attribute awareness, resulting from the three 
extra questions that we asked of  All-Aware participants (i.e., if one had not been 
aware of  E  and  ¬E  in the first place, then the question itself would automatically 
generate awareness of those events). To see how this would impact choices, we 
note that the randomized assignment of subjects to either treatment guarantees  a 
priori similar samples across treatments (thus,  a priori similar choice distributions, 
on average). Now recall that—from the experimenter’s perspective—the  All-Aware 
questions ensure that each participant in the  All-Aware treatment will shift (from an 
unobservable type) to type   K ′   =  {C, S, O}  . If a participant’s prior type was differ-
ent, in that before seeing those questions she had ignored some attribute/s, then she 
might reconsider her strategy as a result of the updated type. This leads to behavioral 
differences across treatments. (See Claim 1 in the Appendix for a formal statement.)

The next hypothesis addresses whether any  between-treatment differences in 
game play are reflected in the subjects’ guesses about which objects will be chosen 
by others. Such guesses were elicited from both  All-Aware and Baseline participants 
(see task (iv) in Section II) and should not be confused with the awareness beliefs 
discussed  above. Due to the same reasoning as above, standard models entail the 
following null hypothesis.

HYPOTHESIS 4 (H4): Average guesses (about which objects will be chosen by 
others) do not vary across the Baseline and  All-Aware treatments.

27 Recall that our design involves a  prerandomization mechanism, ensuring that color and shape oddities are 
balanced across positions. So, high beliefs   μ  i  

O   cannot be driven by an abundance of color/shape oddities in a par-
ticular position. As we will see, the data reject null hypothesis H2.c in favor of our model’s alternative hypothesis: 
more precisely, the frequency of play of the top object is positively related to   μ  i  

O  , which points to a labeling such 
as   ( (top) ,  (other) ,  (other) )  .

28 Also note that the  All-Aware treatment manipulation hints at multiple attributes at once (without directing 
subjects’ attention to any one frame in particular), thereby minimizing any implicit demand effects on the part of 
our questions.
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Conversely, our model’s alternative hypothesis is that “average guesses vary 
across treatments” due to an increase in attribute awareness on the part of  All-Aware 
participants.

Our final hypothesis has to do with differences in coordination rates between 
treatments. Once again, if participants were unaffected by the  All-Aware questions 
(as is implied by standard Bayesian models), then average choices would not vary 
across treatments; if so, coordination rates would not vary either. This means that 
standard models entail the following null hypothesis.

HYPOTHESIS 5 (H5): Coordination rates do not vary between the 
⟨Baseline, Baseline⟩ and ⟨Baseline, All-Aware⟩ pairs of subjects.

By contrast, our model’s alternative hypothesis is that “the treatment manipula-
tion causes a decrease in coordination rates,” as follows. As a benchmark, take the 
hypothetical case in which Baseline participants are paired with Baseline partic-
ipants (i.e., ⟨Baseline, Baseline⟩ pairs); we then compare such a reference group 
with the case in which Baseline participants are paired with  All-Aware participants, 
as in our experimental design (i.e., ⟨Baseline, All-Aware⟩ pairs).29 Here, the model 
implies that coordination rates for ⟨Baseline, All-Aware⟩ pairs must be weakly 
lower than those for ⟨Baseline, Baseline⟩ pairs. The informal argument is that some 
Baseline participants overlook an attribute, so they will not match their  All-Aware 
counterparts who choose an object based on that attribute; generalizing, increases in 
attribute awareness affect the variance of the choice distributions, thus coordination 
rates. (See Claim 2 in the Appendix for a formal statement.)

IV. Experimental Results

A. General Procedures, Recruitment, and Earnings

Experimental sessions were conducted at UCSB, with subjects being recruited 
from a broad range of academic departments via ORSEE (Greiner 2015). A total of 
108 subjects took part in our 6 sessions. Subjects on average earned a total payoff of 
about $12 (over 10 games, including a $5  show-up fee), with minimum (maximum) 
earnings of $6.50 ($17.50). On average, sessions had 18 subjects and lasted about 
40 minutes. In each session half of the participants was assigned to the  All-Aware 
treatment and half to the Baseline. No subject could participate in more than one 
session.

B. Tests of H1

We begin by analyzing the  All-Aware treatment. Here we address the null hypoth-
esis H1, concerning the distribution of subjective probabilities about whether  others 

29 Note that it would not make sense to consider the case in which  All-Aware participants are paired with each 
other since that would contradict the information provided during the experiment (i.e., recall that  All-Aware partic-
ipants believe—correctly—that their counterparts’ awareness has not been raised exogenously).
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do or do not notice an attribute (collectively referred to as “awareness beliefs” 
for short). To that end, Figure 3 reports histograms for the awareness beliefs with 
respect to colors, shapes, and order (which for brevity we respectively denote by 
  μ  i  

C ,  μ  i  
S ,  μ  i  

O  , where each variable is a number belonging to the interval   [0, 1]  ).30

A quick glance at Figure 3 shows that  All-Aware participants are really not cer-
tain that their Baseline counterparts would notice every feature of the action set, as 
is instead implied by the Bayesian paradigm (i.e.,  incomplete-information models 
presume common knowledge of the information structure, which precludes a player 
from believing that the counterpart may overlook any features of the game). In brief, 
we see from Figure 3 that only about 30 percent of the color (first panel) and shape 
(second panel) awareness beliefs are within the  95–100 percent interval, and less 
than 15 percent of the order (third panel) awareness beliefs are within that inter-
val. Notably, the rate of order awareness beliefs that fall within the  95–100 percent 
interval is significantly different ( N = 108 observations ,  z = 2.053 ,  p = 0.040,  
 two-tailed test of proportions) than the corresponding rate for color and shape 
awareness beliefs, confirming that these responses are not merely noise.

Now, to reject the null hypothesis H1 (“ All-Aware participants believe that their 
Baseline counterparts notice with certainty any differences with respect to colors, 
shapes, and order”), we just need to show that the awareness beliefs are less than 100 
percent. So, with 70 percent–85 percent of the distributions outside of the  95–100 
percent interval, we can readily reject H1. People do not have faith that everything 
will be observed, giving some scope for unawareness to have an impact. Even a 
conservative Wilcoxon  signed-rank test for whether the median belief differs from 
the value of 95 percent (i.e., instead of 100 percent, thus allowing for “almost cer-
tainty”) is strongly significant: for color awareness beliefs ( N = 54 observations , 
 z = −4.376 ,  p = 0.000 ,  two-tailed), for shape awareness beliefs ( N = 54 observa-
tions ,  z = −4.280 ,  p = 0.000 ,  two-tailed), and finally, for order awareness beliefs 
( N = 54 observations ,  z = −5.997 ,  p = 0.000 ,  two-tailed). Therefore,  All-Aware 
participants are far from certain that their Baseline counterparts would notice every 
feature of the action set. (Incidentally, we stress that the tests above are conducted 
on the sample of  per subject mean beliefs, to satisfy the assumption of independence 
of observations; i.e., the tests use one observation per participant.) We conclude that 
the data reject the null hypothesis H1.

Moving on, we note that evidence against H1 is consistent with our model as 
well as with earlier theories featuring “ nonstandard” information structures, such as 
Bacharach’s (1993) variable frame theory and related work (Bacharach and Stahl 
2000; Casajus 2000; Janssen 2001), henceforth, collectively referred to as VFT. 
While each VFT variant differs somewhat from others, they each allow for some 
heterogeneous awareness. (As we previously noted, our model draws on this litera-
ture, yet unlike VFT, we define a lattice of state spaces and provide a new solution 
concept, which avoids the drawbacks resulting from some VFT assumptions.) In 
particular, VFT assumes that—in a given population—the probability that someone 

30 Here, such elicited beliefs fully determine a type mapping, as defined in Section IB. For instance, let’s denote 
by   ω ̌    the state where  j  is aware of the color attribute only (i.e.,  j  is aware of the color attribute and not of the shape 
or order attributes). Then, the probability  i ’s type mapping assigns to   ω ̌    is computed as   μ  i  

C  ⋅  (1 −  μ  i  
S )  ⋅  (1 −  μ  i  

O )  .
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thinks of an attribute is a constant, and it is independent of the “physical distribu-
tion of the objects; and of features of the player, such as her skill, her experience 
of similar games, and her opportunities to search for descriptors” (Bacharach and 
Bernasconi 1997, 13). In the context of our experiment, this implies that the prob-
ability of noticing, say, color differences is a constant, and it is invariant to the 
specific color of the objects across games. Further, VFT posits that players’ beliefs 
consistently reflect that probability.31

31 This VFT assumption is motivated by the notion of the “acquisition of mutual beliefs among normal agents.” For 
example, suppose that in a given population the actual probability that players normally notice color differences is  p . 
There, VFT posits that all (Bacharach 1993, 260–63) or some (Bacharach and Stahl 2000, 230) of the  color-perceiving 
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Figure 3. Beliefs about Others’ Awareness (All-Aware treatment)

Notes: The first, second, and third panel (from the top) show histograms for the beliefs about others noticing differ-
ences in the objects with respect to colors, shapes, and order, respectively. The data refer to  per subject mean beliefs 
elicited (as percentages) over 10 games; such beliefs are treated as continuous variables, with the width of each his-
togram bin covering about 5 percentage points.
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Since the VFT assumptions above are too strong to generate testable predictions, 
here we relax them. Instead of assuming that any individuals who perceive an attribute  
k  somehow hold identical beliefs, we assume that beliefs are concentrated around a 
value that we take to be the mean of a normal distribution. We first report summary 
statistics to have a sense of whether mean beliefs are similar across players; we 
then test if those beliefs come from the same normal distribution. Descriptive statis-
tics relating to the ( per subject) mean dataset confirm that color awareness beliefs 
are fairly dispersed across players:  avg. = 86.825 ,  SD = 12.552 ; further, the 
 Shapiro-Wilk W-test (i.e., a common test for normality) rejects the hypothesis that 
subjects’ beliefs come from the same normal distribution ( N = 54 observations , 
 z = 4.723 ,  p = 0.000 ). For shape awareness beliefs we find that  avg. = 83.470 , 
 SD = 15.912 , and, again, the  Shapiro-Wilk W-test rejects the hypothesis that 
beliefs come from the same normal distribution ( N = 54 observations ,  z = 3.779 , 
 p = 0.000 ). For order awareness beliefs we find that  avg. = 71.140 ,  SD = 18.587 ; 
here, the test provides mild evidence against the hypothesis that beliefs come from 
the same normal distribution ( N = 54 observations ,  z = 1.413 ,  p = 0.078 ); how-
ever, the standard deviation of the observed distribution is even higher than in pre-
vious cases. So, while VFT implies that—for each attribute  k —beliefs should not 
vary across  k -perceiving individuals, our data show that they vary substantially and 
do not exhibit normality.

The tests so far utilized  per subject mean observations. In what follows, instead, 
we test if an individual’s own beliefs are similar across the sequence of games 
(recall that, per VFT, the probability that someone thinks of an attribute is a con-
stant, and it is independent of the physical distribution of the objects). To that end, 
we report a Friedman test (i.e., the  nonparametric analog to the Repeated Measures 
ANOVA) conducted on the entire sequence of awareness beliefs, consisting of 
ten games per subject. This test indicates significant differences across games in 
the case of color awareness beliefs (  χ  9  

2  = 22.946 ,  p = 0.006 ), shape awareness 
beliefs (  χ  9  

2  = 19.087 ,  p = 0.024 ), and order awareness beliefs (  χ  9  
2  = 37.465 ,  

p = 0.000 ). So the data do not support the VFT prediction that beliefs reflect the 
fact that the probability of noticing an attribute must be constant across games. (For 
details, please see Charness and Sontuoso’s (2023) replication data.)

In summary, the data reject null hypothesis H1, thereby contradicting the pre-
dictions of a standard model; moreover, we find that the data contradict some VFT 
predictions. In fact, we find support for our model’s alternative hypothesis, that is, 
“ All-Aware participants believe that others may fail to notice some features of the 
action set, with such beliefs varying across players as well as games.”

players correctly know  p , while the rest of the players do not hold any beliefs about color perception. In the context of 
our experiment, this implies that  All-Aware participants generally hold correct beliefs about their Baseline counterparts. 
Yet this is implausible in games where one has no experience about the others’ perceptual limitations. In designing an 
empirical test of VFT, the late Bacharach acknowledged this and other issues, adding that “[the authors] wanted to test 
VFT constructively, that is, in such a way that evidence of incorrectness would show how to improve it” (Bacharach and 
Bernasconi 1997, 12).
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C. Tests of H2

We proceed to test null hypothesis H2 (with components a, b, c), which as usual is 
based on a standard model (per footnote 25). In brief, the  single-state-space Bayesian 
paradigm implies no particular relation between one’s strategy and one’s awareness 
beliefs: in fact, in that model one is aware of everything and knows that others are 
aware of everything (thus, each elicited belief  ≈ 1 ).

Specifically, H2.a says that there is no relationship between color awareness 
beliefs   μ  i  

C   and choice behavior in games containing color oddities. For a formal 
test, column [I] of Table 2 presents a logit model with a subject’s choice of the color 
oddity as the binary dependent variable; the list of predictors includes each of the 
awareness beliefs   μ  i  

C  ,   μ  i  
S  ,   μ  i  

O  , as well as a round variable (controlling for any time 
effects). Note that model [I] uses  All-Aware data from any games containing a color 
oddity, with half such games containing a shape oddity as well; in order to provide 
a most conservative test, we present robust standard errors adjusted for  two-way 
clustering (Cameron, Gelbach, and Miller 2011), on the subjects and on the games. 
Results from model [I] show a significant positive effect of   μ  i  

C   (i.e., the belief about 
others noticing the different colors) on the likelihood of playing the color oddity; 
also, we find a significant negative effect of   μ  i  

S   and   μ  i  
O  . Hence, the data reject H2.a 

in favor of the alternative hypothesis derived from our model: “the frequency of play 
of color oddities is positively related to   μ  i  

C  , and not to   μ  i  
S   or   μ  i  

O  .”
We turn to null hypothesis H2.b, which posits no relationship between shape 

awareness beliefs   μ  i  
S   and choice behavior in games containing shape oddities. In 

short, column [II] of Table 2 presents a logit model with a subject’s choice of the 
shape oddity as the binary dependent variable; as before, predictors include the 
awareness beliefs as well as a round variable. Note that model [II] uses  All-Aware 
data from any games containing a shape oddity, with half such games containing a 
color oddity as well; again, robust standard errors are adjusted for clustering. Model 
[II] indicates a significant positive effect of   μ  i  

S   (i.e., the belief about others noticing 
the different shapes) on the likelihood of playing the shape oddity; additionally, we 
find a significant negative effect of   μ  i  

C   and no significant effect of   μ  i  
O  . So, the data 

reject H2.b in favor of our model’s alternative hypothesis: “the frequency of play of 
shape oddities is positively related to   μ  i  

S  , and not to   μ  i  
C   or   μ  i  

O  .”
We move on to null hypothesis H2.c, which concerns the full sample of games (as 

opposed to a subsample of games containing color or shape oddities). This hypothe-
sis posits no relationship between order awareness beliefs   μ  i  

O   and behavior. Instead, 
our model predicts that “the frequency of play of (just) one of the three positions is 
positively related to   μ  i  

O  , while no position is positively related to   μ  i  
C   or   μ  i  

S  .” (In this 
regard, it is worth noting that our design involves a  prerandomization mechanism, 
ensuring that color and shape oddities are balanced across positions: this implies 
that high beliefs   μ  i  

O   cannot be driven by an abundance of color/shape oddities in 
a particular position.) That said, columns [III]–[V] of Table 2 present logit models 
respectively consisting of a subject’s choice of the top, middle, and bottom object as 
the binary dependent variable; again, predictors include the awareness beliefs, along 
with a round variable (the models use  All-Aware data from each of the ten games, 
with robust standard errors adjusted for clustering). Model [III] shows a mildly 
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 significant positive effect of   μ  i  
O   (i.e., the belief about others noticing the order of 

the objects) on the likelihood of playing the top object. Interestingly, while none of 
the models [III]–[V] indicates any significant effect of   μ  i  

C   or   μ  i  
S  , model [V] shows a 

significant negative effect of   μ  i  
O   on the likelihood of playing the bottom object. We 

conclude that the data reject H2.c in favor of our model’s alternative hypothesis: 
specifically, we find evidence that the frequency of play of the top object is pos-
itively related to   μ  i  

O  , which points to a labeling such as   ( (top) ,  (other) ,  (other) )  .
To recap, the tests reject H2 (a, b, c). In fact, the tests support our rationalizability 

concept, according to which  i ’s FDR strategy is the oddity induced by the attribute  most 
likely noticed by  j .

D. Tests of H3

In the rest of the paper, we contrast the  All-Aware treatment with the Baseline. 
We start by testing null hypothesis H3, which pertains to the distributions of choice 
data: based on the standard Bayesian paradigm, this null hypothesis says that there 
should be no behavioral differences across the two treatments, on average (i.e., if 
one never overlooks any attributes, then the three  All-Aware questions cannot alter 
one’s view of the game). Instead, our model’s alternative hypothesis is that choices 
vary between treatments due to an increase in attribute awareness on the part of 
 All-Aware participants.

Prior to discussing our tests, we shall present some summary statistics. To that 
end, we let   ( ( a 1  ) ,  ( a 2  ) ,  ( a 3  ) )   denote a generic, ordered triplet of objects (  a n    refers 
to the  nth available option). In the Baseline subjects chose   a 1   ,   a 2   , and   a 3   , respec-
tively, 40.18 percent, 33.15 percent, and 26.67 percent of the time (averaging across 
10 games); in the  All-Aware treatment, instead, 50.00 percent, 26.30 percent, and 
23.70 percent, respectively. These average ( across-games) distributions hint at 

Table 2—Logit Model Coefficients, with Robust Standard Errors Adjusted for  Two-Way 
Clustering on the Subjects and the Games

[I]
Choice of the 
color oddity

[II]
Choice of the 
shape oddity

[III]
Choice of the

 top object

[IV]
Choice of the 
middle object

[V]
Choice of the 
bottom object

Belief about others noticing
 colors   μ  i  

C  
0.029

(0.010)
−0.020
(0.008)

−0.014
(0.013)

−0.001
(0.015)

0.024
(0.015)

Belief about others noticing
 shapes   μ  i  

S  
−0.012
(0.006)

0.021
(0.008)

0.001
(0.008)

0.002
(0.010)

−0.004
(0.009)

Belief about others noticing
 order   μ  i  

O  
−0.013
(0.006)

0.004
(0.006)

0.008 
(0.004)

−0.001
(0.005)

−0.010
(0.003)

Round −0.034
(0.036)

0.261
(0.129)

0.042
(0.052)

−0.040
(0.085)

−0.013
(0.114)

Constant −0.317
(0.966)

−1.88
(1.158)

0.289
(1.034)

−0.818
(0.892)

−2.164
(1.045)

Pseudo R2 0.038 0.077 0.017 0.003 0.024
Observations 324 324 540 540 540

Notes: Models [I] and [II] use  All-Aware data from any games with at least a color and a shape oddity, respectively; 
models [III]–[V] use  All-Aware data from all ten games. For details about the distribution of oddities across games, 
see footnote 22.
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 differences between treatments, yet these statistics are uninformative as to the rela-
tion between one’s attribute awareness and the objects’ attributes in each game. So, 
like before, we must run an analysis of the full sample of individual observations 
(adjusting standard errors for clustering on the subjects and the games).

Columns [I]–[III] of Table  3 present logit models respectively consisting of a 
subject’s choice of   a 1   ,   a 2    and   a 3    as the dependent variable. The list of predictors 
includes (i) “Treat,” a treatment indicator taking on value zero or one when a sub-
ject is assigned to the Baseline or  All-Aware, respectively; (ii) “Odd,” a dummy for 
whether the object   a n    specified in the column’s header is a color/shape oddity or 
not; (iii) a Treat × Odd interaction variable; (iv) “Else,” a dummy for whether the 
triplet of objects contains another color/shape oddity (i.e., other than the object   a n    
specified in the column’s header); (v) a “Round” variable, controlling for any time 
effects.

Results from Table 3 show a positive effect of Odd and a negative effect of Else. 
This means that the frequency of play of an object   a n    increases when that object is 
a color/shape oddity and it decreases when another object is a color/shape odd-
ity. Remarkably, the significance of Treat in models [I]–[II] provides evidence that 
behavior varies across treatments, in such a way that  All-Aware participants are 
more likely to choose   a 1    (and less likely to choose   a 2   ) than Baseline participants. 
We interpret such differences as being driven by an increase in the awareness of the 
order labeling   ( (top) ,  (other) ,  (other) )  .

Further, we note that the interaction variable in each of the models of Table 3 
is  nonsignificant, indicating that  All-Aware participants are as likely as Baseline 

Table 3—Logit Model Coefficients, with Robust Standard Errors Adjusted for  Two-Way 
Clustering on the Subjects and the Games

[I]
Choice of   a 1   

[II]
Choice of   a 2   

[III]
Choice of   a 3   

Treat
 (Treatment indicator)

0.575 
(0.282)

−0.623 
(0.279)

−0.341
(0.239)

Odd
 (Dummy for whether the object   a n    specified in
  the column’s header is a color/shape oddity or not)

1.315 
(0.360)

0.986 
(0.579)

1.343 
(0.503)

Treat × Odd
 (Interaction variable)

−0.429
(0.299)

0.371
(0.362)

0.284
(0.317)

Else
 (Dummy for whether the triplet contains another
  color/shape oddity or not)

−1.215 
(0.177)

−0.904 
(0.364)

−0.243
(0.426)

Round −0.026 
(0.011)

0.001
(0.080)

0.018
(0.045)

Constant 0.299
(0.202)

−0.758
(0.809)

−1.591 
(0.548)

Pseudo R2 0.095 0.117 0.096
Observations 1,080 1,080 1,080

Notes:   ( ( a 1  ) ,  ( a 2  ) ,  ( a 3  ) )   denotes a generic, ordered triplet of objects (  a n    refers to the  nth available option); each 
model uses data from all ten games. The indicator Treat takes on value zero or one when a subject is, respectively, 
assigned to the Baseline or  All-Aware.
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participants to choose color and shape oddities (counted together). This appears to 
suggest that our treatment manipulation did not affect the  All-Aware participants’ 
consideration of color/shape frames. However, the  nonsignificance of the inter-
action might conceal  opposite-sign changes in the frequency of play of color and 
shape oddities. To check that, we analyze the subsample of games that contain both 
a color oddity and a shape oddity at once (in the same triplet of objects). Given this 
subsample, we consider a simple logit model with one’s choice of color oddities 
as the binary dependent variable and the treatment indicator as the sole predictor: 
such a model reveals a significant negative impact of the  All-Aware treatment on 
the choice of color oddities ( N = 324 ,  coef. = −0.275 ,  z = −2.20 ,  p = 0.028 , 
 two-tailed logit with standard errors adjusted for clustering). Given the same sub-
sample, we also consider a logit model with one’s choice of shape oddities as the 
binary dependent variable and the treatment indicator as the sole predictor: this model 
shows a positive  nonsignificant effect of the  All-Aware treatment on the choice of 
shape oddities ( N = 324 ,  coef. = 0.268 ,  z = 0.98 ,  p = 0.325 ,  two-tailed logit 
with clustered standard errors).

The analysis above rejects H3, thereby supporting our model’s alternative hypoth-
esis that “average choices vary across treatments.” In short, the data indicate behav-
ioral differences pointing to an increase in the awareness of a labeling like   ( (top) , 
 (other) ,  (other) )  . In other words, the  All-Aware manipulation affects choices 
because it makes participants think about order (and to a lesser extent shape) frames 
to which they would otherwise not have paid attention.

E. Tests of H4

We now verify if the above differences in game play are reflected in the subjects’ 
guesses about which objects will be chosen by others. Such guesses were elicited from 
both  All-Aware and Baseline participants (see task (iv) in Section II) and should not 
be confused with the awareness beliefs discussed above. As usual, the null hypothe-
sis is based on the standard Bayesian paradigm, which entails no differences in the 
guesses stated across treatments, on average.32 On the other hand, our model’s alter-
native hypothesis is that guesses vary across treatments due to an increase in attribute 
awareness.

Columns [I]–[III] of Table 4 present OLS models consisting of a subject’s guess 
about respectively   a 1   ,   a 2    and   a 3    being chosen by others as the dependent variable; 
the list of predictors is the same as in Table 3. Results from Table 4 confirm a sig-
nificant positive effect of Odd and a negative effect of Else: this means that guesses 
(about   a n    being chosen by others) increase when the object is a color/shape odd-
ity, and they decrease when another object is a color/shape oddity. Further, the 
mild significance of Treat in model [I] provides some evidence that guesses about 
  a 1    (which corresponds to the top object) change—namely, increase—in the 

32 Indeed, since participants are randomly assigned to either treatment, the large sample size and the homoge-
neity in the  makeup of the subject pool give us no reason to assume prior differences across samples. Given this, 
if subjects’ awareness is unaffected by the treatment manipulation (in that subjects pay attention to all the frames 
regardless of the treatment, as is assumed by Bayesian models), then Bayesian models imply no differences in the 
distribution of guesses.
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 All-Aware treatment relative to the Baseline. At the same time, the significant nega-
tive effect of Treat in model [III] confirms that guesses about   a 3    (the bottom object) 
decrease in the  All-Aware treatment relative to the Baseline. Finally, note that the 
interaction variable in model [I] reveals that the  All-Aware participants’ guesses 
about   a 1    increase relatively less when   a 1    is a color/shape oddity.33

We conclude that the results reject H4 and support our model’s alternative hypoth-
esis that “average guesses vary across treatments.” In particular, the present analysis 
corroborates our earlier interpretation that  All-Aware participants exhibit an increase 
in the awareness of the order labeling   ( (top) ,  (other) ,  (other) )  . Still, it is worth dis-
cussing a speculative  counterargument, according to which the  All-Aware manipula-
tion could lead subjects who had already been aware of all three attributes to somehow 
“reassess” their guesses (i.e., despite there being no change in attribute awareness). In 
this respect, we note that while such a reassessment might be justified at the margin 
(were one to attach nearly the same probability to multiple objects), one cannot jus-
tify a significant reassessment unless new information has arisen. Relatedly, we stress 
that the  All-Aware treatment manipulation hints at several attributes at once (without 
directing subjects’ attention to any one frame in particular), thereby minimizing any 
implicit demand effects. Thus, subjects could not interpret a question in the  All-Aware 
treatment as a signal that “one should particularly pay attention to an attribute” since 
such a signal would be uninformative in that the three questions are symmetric to each 

33 If   a 1    is a color/shape oddity, the predicted value of the guess about   a 1    goes from 40.70 percent to 41.93 percent 
when moving from the Baseline to the  All-Aware treatment. By contrast, if   a 1    is not a color/shape oddity, the predicted 
value of the guess about   a 1    increases from 32.58 percent to 36.47 percent when moving from Baseline to  All-Aware. 
The latter change is consistent with an increase in the awareness of a labeling such as   ( (top) ,  (other) ,  (other) )   since  
color/shape oddities are not a factor in that case.

Table 4—OLS Regression Coefficients, with Robust Standard Errors Adjusted for  Two-Way 
Clustering on the Subjects and the Games

[I]
Guess about   a 1   

[II]
Guess about   a 2   

[III]
Guess about   a 3   

Treat
 (Treatment indicator)

3.891 
(2.269)

−1.866
(1.270)

−2.938 
(1.496)

Odd
 (Dummy for whether the object   a n    specified in the
  column’s header is a color/shape oddity or not)

6.777 
(1.578)

5.989 
(2.507)

6.080 
(2.564)

Treat × Odd
 (Interaction variable)

−2.669 
(0.603)

1.262
(2.235)

2.706
(2.520)

Else
 (Dummy for whether the triplet contains another
  color/shape oddity or not)

−6.488 
(0.371)

−4.991 
(1.547)

−1.325
(1.375)

Round 0.095
(0.111)

−0.221
(0.290)

0.141
(0.207)

Constant 37.650 
(0.824)

34.663 
(2.759)

29.254 
(2.225)

R2 0.068 0.115 0.088
Observations 1,080 1,080 1,080

Notes:   ( ( a 1  ) ,  ( a 2  ) ,  ( a 3  ) )   denotes a generic, ordered triplet of objects (  a n    refers to the  nth available option); each 
model uses data from all ten games. The indicator Treat takes on value zero or one when a subject is, respectively, 
assigned to the Baseline or  All-Aware.
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other. This falsifies the argument that one may observe a significant change in the dis-
tribution of guesses even without a change in awareness.

F. Tests of H5

Here we test null hypothesis H5, which concerns coordination rates across 
the Baseline and  All-Aware treatments. While Bayesian models imply no 
 between-treatment differences in behavior and so no difference in coordination rates, 
the alternative hypothesis derived from our model is that the treatment manipulation 
causes a change, whereby coordination rates for ⟨Baseline,  All-Aware⟩ pairs are 
lower than those for ⟨Baseline, Baseline⟩ pairs (see Appendix for a formal claim).

We start by reporting some summary statistics. In keeping with previous studies, 
we report expected coordination rates (as opposed to actual frequencies of coordina-
tion), computed at the session level.34 As a benchmark, we consider the hypothetical 
case in which a Baseline participant is paired with another Baseline participant, 
which yields a 50.2 percent coordination rate, averaging across sessions. We then 
turn to the case in which an  All-Aware participant is paired with a Baseline partic-
ipant—as per our experimental design—which yields a 44.6 percent coordination 
rate (averaging across sessions). This provides informal evidence against the null 
hypothesis.

For a formal test we now contrast the distribution of  per session mean coordi-
nation rates for ⟨Baseline,  All-Aware⟩ pairs against the distribution for ⟨Baseline, 
Baseline⟩ pairs. Such a comparison allows us to conclude that the coordination 
rates differ significantly from each other under a Wilcoxon signed-rank sum test 
( N = 12 observations ,  z = −2.201 ,  p = 0.027 ,  two-tailed). Additionally, a 
binomial test can help us verify if ( same-direction) differences across coordi-
nation rates are due to chance, as opposed to  treatment-induced variations in 
awareness. In this regard, we note that ⟨Baseline,  All-Aware⟩ pairs exhibit lower 
coordination rates than ⟨Baseline, Baseline⟩ pairs in six out of six sessions, con-
firming that variations in subjects’ awareness do have an impact on coordination 
( N = 6 ,  p =   (1/2)    5  = 0.031 ,  two-tailed). In brief, the data reject null hypoth-
esis H5 in favor of our model’s alternative hypothesis that “the treatment manipu-
lation causes a decrease in coordination rates.” As per our prediction, an increased 
awareness can hurt coordination.

V. Discussion and Conclusion

We have proposed a model allowing for heterogeneity in players’ awareness as to 
the attributes of the action set. We have then provided a test of competing  hypotheses 

34 Actual coordination rates depend on individual choices and on a stochastic element, that is, the random 
assignment of partners: in a relatively small sample, this random element might bias the rates. “Thus, the actual 
frequency of coordination has no special significance; it is more appropriate to consider the expected frequency of 
coordination” (Mehta, Starmer, and Sugden 1994, 663, italics in original). Here we compute the expected coordi-
nation rates from the observed distribution of individual choices, by calculating the probability that two subjects 
match in a certain round (i.e., triplet) and session;  per session mean rates are then computed by averaging across 
all the rounds in a session.
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about the impact of frames on choice behavior. The data confirm that changes in 
attribute awareness cannot be plausibly accounted for by a standard Bayesian model 
(which precludes unawareness in the first place); in fact, we find that the best explana-
tion of the data is consistent with our proposed model and solution concept.

Taken together, the present theory and evidence provide a coherent account of the 
impact of varying  multiattribute awareness. This account builds on research streams 
such as the formal analysis of unawareness (e.g., Dekel, Lipman, and Rustichini 1998a; 
Heifetz, Meier, and Schipper 2013a) and the study of labelings (Bacharach 1993; 
Bacharach and Stahl 2000; Janssen 2001). With reference to the latter, we note that 
while Bacharach’s work and related variants allowed for heterogeneous awareness—as 
previously discussed—their solution concepts rely on quite strong assumptions; thus, 
they are not well suited as a predictive device in experimental games where one has no 
experience about the others’ perceptual limitations or in cases where one’s perception 
may change during the game. In reviewing some of these drawbacks, the late Bacharach 
hinted at several directions for future research, some of which we have taken up here 
(e.g., see the discussion in Bacharach and Bernasconi 1997, 12–13). Relatedly, we note 
that we depart from Bacharach and Bernasconi’s seminal experiment since their design 
did not attempt to raise subjects’ awareness, nor did it test if subjects  best-respond to 
their “awareness beliefs.” (For an overview of related experiments, see Rojo Arjona 
2020.)

In this connection, Blume and Gneezy (2010) studied an interesting form of het-
erogeneity in frame awareness, drawing on the influential analysis of symmetries by 
Crawford and Haller (1990) and Blume (2000). Specifically, Blume and Gneezy’s 
experimental design presupposes two levels of cognitive ability (low and high), 
where only the high type perceives a symmetry in the structure of the options that 
induces an optimal strategy. While the  Blume-Gneezy design did not elicit aware-
ness beliefs, their results show evidence that high types conceive of and react to low 
types (e.g., subjects behaved differently when trying to match an unknown part-
ner rather than their own previous choice). Summing up, in the authors’ words the 
 Blume-Gneezy design aims to address “logical inference” and “mathematical foci” 
(2010, 490); as such, it does not address individuals who are similar in their cog-
nitive skills and yet heterogeneous in the extent to which they simply think about 
multiple symmetric attributes when making a decision.

In the domain of (normative) equilibrium theories, we note that Arad and 
Rubinstein’s (2019) model does address  multiattribute thinking (in Colonel Blotto 
games); however, their model pertains to problems where “players have accumulated 
experience in playing the game and have settled on a particular mode of behavior” (p. 
286). More explicitly, their work does not aim to address the case where inexperienced 
subjects suffer from partial perception: hence, unawareness has no role in their model. 
In a similar vein,  Alós-Ferrer and Kuzmics (2013) study players with common knowl-
edge of a focal frame, so their model “is not a descriptive one of how players behave 
in a given framed game in the lab [ … ], but rather how players should and perhaps 
eventually will behave, after generations of teaching and learning” (p. 229).

In the experimental realm research on the impact of “prescriptive frames” has 
compared behavior across problems with  exogenously assigned game labels (e.g., 
“Community game” versus “Wall Street game”) (Kay and Ross 2003) or action 
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labels (e.g., {cooperate, defect} versus {out, in}) (Andreoni 1995).35 There, the 
experimenter induces a prescriptive frame by evoking individualistic versus coop-
erative norms, which direct subjects’ attention toward the action one ought to take 
in the context evoked. In this respect, we note that our design does not involve any 
exogenous labels; also, our design evokes multiple frames at once, thereby minimiz-
ing any implicit demand effects.

To conclude, this paper has studied how attribute awareness relates to rational 
choice; the data confirm that changes in attribute awareness do affect choice behav-
ior in matching games. Going forward, we note that since our solution concept is 
defined inductively, it can also be used to generate predictions for finite, low levels 
of mutual belief in rationality (e.g., as in the  Level-k literature) in games without 
a pure coordination motive. Indeed, a better appreciation of the  perception-action 
link may lead to new applications for games incorporating an element of conflict 
(Shah and Ludwig 2016). Everyday life does in fact show that our mental framing 
can influence which actions we consider—and then choose—in a broad array of 
interactions.

Appendix

CLAIM 1: An increase in attribute awareness (on the part of some  All-Aware partic-
ipants) causes behavioral differences across treatments, ceteris paribus.

PROOF:
Assume that, in a given game, there is a subset of Baseline participants who do 

not think about all three attributes. For instance, and without loss of generality, 
suppose that some Baseline participants are aware of a single attribute (besides  ∅ ); 
formally, there are some Baseline participants whose   K ′    type is either   {C}   or   {S}    
or   {O}  . It follows from Observation 1 that each such participant will choose the 
color, shape, and order oddity (if any), respectively. Now, regardless of the specific 
distribution of types, note that the randomized assignment of subjects to either treat-
ment ensures  a priori similar samples (i.e., it ensures that the unobserved  a priori 
distribution of types is similar) across treatments. Then, it follows from Observation 
2 that an increase in attribute awareness causes a change in strategy on the part of 
some of the  All-Aware participants, relative to their Baseline counterparts. Such a 
change implies behavioral differences across treatments.  ∎ 

CLAIM 2: An increase in attribute awareness causes a fall in coordination rates, 
ceteris paribus.

35 For evidence on exogenous labels, see O’Neill (1987); Rapoport and Boebel (1992); Rubinstein, Tversky, 
and Heller (1997); Tversky (2004). For evidence on labels in the context of  Level-k reasoning, see Crawford and 
Iriberri (2007); Crawford, Gneezy, and Rottenstreich (2008); and Sontuoso and Bhatia (2021); see also Alaoui, 
Janezic, and Penta (2020).
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PROOF:
We start by noting that distributions of choice data (on which coordination rates 

depend) can be represented as  three-dimensional vectors, where the  nth element of 
the vector indicates the frequency of play of the  nth object in a given sample of partici-
pants. Let the vector  ϒ  denote the choice distribution of a sample of Baseline partic-
ipants. Further, let   ϒ ̃    and    ϒ ̃     t   respectively denote the “ex ante” and “ex post” choices 
of a sample of  All-Aware participants; that is,   ϒ ̃    represents the unobserved distribu-
tion of choices absent the treatment manipulation (i.e., prior to being exposed to the 
three  All-Aware questions), whereas    ϒ ̃     t   is the observed distribution of choices (i.e., 
after the treatment manipulation). Even though the experimenter does not observe 
  ϒ ̃   , note that the randomized assignment of subjects to either treatment ensures 
 a priori similar samples, across treatments. This implies that the vectors  ϒ  and 
  ϒ ̃    must be similar; formally,  cos (ϒ,  ϒ ̃  )  ∼ 1 , with  cos  denoting the cosine sim-
ilarity of the vectors.36 Next, note that the expected coordination rate can be 
defined as the dot product of the vectors (i.e., the sum of the products of the vec-
tors’ corresponding entries). Thus, in the hypothetical case in which untreated sub-
jects are paired with each other, the coordination rate is given by  ϒ ⋅  ϒ ̃   , where 
 ϒ ⋅  ϒ ̃   =  ∑ n=1  

3    ϒ n     ϒ ̃   n   . Similarly, denote by  ϒ ⋅   ϒ ̃     t   the coordination rate for the 
case in which untreated subjects are paired with treated subjects.

That said, we want to compare  ϒ ⋅  ϒ ̃    with  ϒ ⋅   ϒ ̃     t   and determine which coor-
dination rate is greater. To this purpose, we can use a  well-known result from lin-
ear algebra and rewrite each of the dot products as follows. By the law of cosines 
(Gunning 2018, 65), write  ϒ ⋅  ϒ ̃   ≡  ‖ϒ‖  ⋅  ‖ ϒ ̃  ‖  ⋅ cos (ϒ,  ϒ ̃  )  ; likewise, write 
ϒ ⋅   ϒ ̃     t  ≡  ‖ϒ‖  ⋅  ‖  ϒ ̃     t ‖  ⋅ cos (ϒ,   ϒ ̃     t )  , with   ‖ ∙ ‖   denoting the Euclidean norm of a 
vector. Note that the coordination rates are now expressed as the product of three 
 nonnegative scalars, and hence, we can divide each of the expressions by   ‖ϒ‖  . That 
leaves us to compare   ‖ ϒ ̃  ‖  ⋅ cos (ϒ,  ϒ ̃  )   with   ‖  ϒ ̃     t ‖  ⋅ cos (ϒ,   ϒ ̃     t )  . Before doing so, 
note that per Observation 2 an increase in attribute awareness causes a change in 
strategy on the part of some treated subjects. Under the assumption that participants’ 
deviations from the  ex ante choice distribution are equally likely across objects, 
then the variance of    ϒ ̃     t   will weakly decrease relative to   ϒ ̃   . (Note: the variance of a 
 three-object choice distribution is lowest, with a value of zero, when the frequency 
of play of each object is 1/3, whereas the variance is highest when every partic-
ipant in the sample chooses the same one object.) It is easy to see that whenever 
 var ( ϒ ̃  )  ≥ var (  ϒ ̃     t )  , then it must be that   ‖ ϒ ̃  ‖  ≥  ‖  ϒ ̃     t ‖  . Since by assumption 
 cos (ϒ,  ϒ ̃  )  ∼ 1 , then it follows that   ‖ ϒ ̃  ‖  ⋅ cos (ϒ,  ϒ ̃  )  ≥  ‖  ϒ ̃     t ‖  ⋅ cos (ϒ,   ϒ ̃     t )  . 
Hence,  ϒ ⋅  ϒ ̃   ≥ ϒ ⋅   ϒ ̃     t  . That is, coordination rates for ⟨Baseline, Baseline⟩ pairs 
must be (weakly) greater than those for ⟨Baseline,  All-Aware⟩ pairs.  ∎ 

36 The cosine similarity between ( three-dimensional) vectors  ϒ  and   ϒ ̃    is defined as  cos (ϒ,  ϒ ̃  )  =   
 ∑ n=1  

3
    Υ n     Υ ̃   n   ________ 

 ‖ϒ‖   ‖ ϒ ̃  ‖ 
   , 

where the numerator is the dot product of the vectors and the denominator is the product of the Euclidean norm of each 
vector. The reader can easily verify that, for any two vectors with  nonnegative values, such a similarity measure 
ranges between zero and one. In our case this has a nice interpretation. The cosine similarity is in fact zero if every 
participant in a sample chooses object  a  and every participant in the other sample chooses object   a ′   , for any   a ′   ≠ a .  
By contrast, the cosine similarity is one whenever the choice distributions are identical across the two samples.
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